MFWDD: Model-based Feature Weight Drift Detection Showcased on TLS and QUIC Traffic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F24%3A10133698" target="_blank" >RIV/63839172:_____/24:10133698 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/24:00377361
Výsledek na webu
<a href="https://ieeexplore.ieee.org/abstract/document/10814630" target="_blank" >https://ieeexplore.ieee.org/abstract/document/10814630</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/CNSM62983.2024.10814630" target="_blank" >10.23919/CNSM62983.2024.10814630</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
MFWDD: Model-based Feature Weight Drift Detection Showcased on TLS and QUIC Traffic
Popis výsledku v původním jazyce
Machine learning (ML) represents an efficient and popular approach for network traffic classification. However, network traffic inspection is a challenging domain and trained models may degrade soon after deployment. Besides biases present during data captures and model creation, data drifts contribute significantly to ML model degradation. This paper proposes a novel method called Model-based Feature Weight Drift Detection (MFWDD) for concept drift detection. It is a part of a public software framework suited for dataset drift analysis tailored to the domain of network traffic. This work addresses TLS and QUIC service classification problems, examines a variety of experiments analyzing the evolution of the respective distributions, and observes their degradation over time on different ML features. The MFWDD framework guided TLS and QUIC services classification models retraining throughout an extensive period and not only prevented model degradation but also improved its performance and consistency over time.
Název v anglickém jazyce
MFWDD: Model-based Feature Weight Drift Detection Showcased on TLS and QUIC Traffic
Popis výsledku anglicky
Machine learning (ML) represents an efficient and popular approach for network traffic classification. However, network traffic inspection is a challenging domain and trained models may degrade soon after deployment. Besides biases present during data captures and model creation, data drifts contribute significantly to ML model degradation. This paper proposes a novel method called Model-based Feature Weight Drift Detection (MFWDD) for concept drift detection. It is a part of a public software framework suited for dataset drift analysis tailored to the domain of network traffic. This work addresses TLS and QUIC service classification problems, examines a variety of experiments analyzing the evolution of the respective distributions, and observes their degradation over time on different ML features. The MFWDD framework guided TLS and QUIC services classification models retraining throughout an extensive period and not only prevented model degradation but also improved its performance and consistency over time.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/VJ02010024" target="_blank" >VJ02010024: Analýza šifrovaného provozu pomocí síťových toků</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 20th International Conference on Network and Service Management (CNSM)
ISBN
978-3-903176-66-9
ISSN
2165-963X
e-ISSN
—
Počet stran výsledku
5
Strana od-do
—
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Praha
Datum konání akce
28. 10. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001414325200095