Multi-Objective Bayesian Optimization of Squirrel-Cage Induction Machine
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151567" target="_blank" >RIV/00216305:26220/24:PU151567 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10700205" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10700205</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICEM60801.2024.10700205" target="_blank" >10.1109/ICEM60801.2024.10700205</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-Objective Bayesian Optimization of Squirrel-Cage Induction Machine
Popis výsledku v původním jazyce
In electrical engineering, a design of electrical machine using numerical methods, such as Finite element method, is a common practice. Electrical machines are complex multi-physical systems where for finding the optimal sets of designs solutions, called Pareto fronts, a very effective approach is to use multi-objective optimization. The most popular method for multi-objective optimization of machine design is the use of numerical optimization algorithms such as NSGA-II. However, due to the time-consuming nature of induction machines simulations, this approach is not very effective. This paper addresses this issue by proposing machine learning as a solution, specifically utilizing Multi-objective Bayesian optimization. This optimization method has been used in many industries as an efficient global optimization of the modeled system. By using the right acquisition function, the search space can be efficiently navigated to find the optimal candidates. Moreover, the optimization requires only a limited number of samples. The main aim of this paper is to present this method, which is demonstrated on the optimization of a 1.5 kW induction machine with time-consuming calculations. The machine optimization approach is not the main focus here, as this method can be effectively applied to any machine design or even any optimization approach. Furthermore, two possible approaches of machine optimization using this method are presented here.
Název v anglickém jazyce
Multi-Objective Bayesian Optimization of Squirrel-Cage Induction Machine
Popis výsledku anglicky
In electrical engineering, a design of electrical machine using numerical methods, such as Finite element method, is a common practice. Electrical machines are complex multi-physical systems where for finding the optimal sets of designs solutions, called Pareto fronts, a very effective approach is to use multi-objective optimization. The most popular method for multi-objective optimization of machine design is the use of numerical optimization algorithms such as NSGA-II. However, due to the time-consuming nature of induction machines simulations, this approach is not very effective. This paper addresses this issue by proposing machine learning as a solution, specifically utilizing Multi-objective Bayesian optimization. This optimization method has been used in many industries as an efficient global optimization of the modeled system. By using the right acquisition function, the search space can be efficiently navigated to find the optimal candidates. Moreover, the optimization requires only a limited number of samples. The main aim of this paper is to present this method, which is demonstrated on the optimization of a 1.5 kW induction machine with time-consuming calculations. The machine optimization approach is not the main focus here, as this method can be effectively applied to any machine design or even any optimization approach. Furthermore, two possible approaches of machine optimization using this method are presented here.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 International Conference on Electrical Machines (ICEM)
ISBN
979-8-3503-7060-7
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
„“-„“
Název nakladatele
IEEE
Místo vydání
Turín, Itálie
Místo konání akce
Torino
Datum konání akce
1. 9. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—