Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multi-Objective Bayesian Optimization of Squirrel-Cage Induction Machine

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151567" target="_blank" >RIV/00216305:26220/24:PU151567 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10700205" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10700205</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICEM60801.2024.10700205" target="_blank" >10.1109/ICEM60801.2024.10700205</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multi-Objective Bayesian Optimization of Squirrel-Cage Induction Machine

  • Popis výsledku v původním jazyce

    In electrical engineering, a design of electrical machine using numerical methods, such as Finite element method, is a common practice. Electrical machines are complex multi-physical systems where for finding the optimal sets of designs solutions, called Pareto fronts, a very effective approach is to use multi-objective optimization. The most popular method for multi-objective optimization of machine design is the use of numerical optimization algorithms such as NSGA-II. However, due to the time-consuming nature of induction machines simulations, this approach is not very effective. This paper addresses this issue by proposing machine learning as a solution, specifically utilizing Multi-objective Bayesian optimization. This optimization method has been used in many industries as an efficient global optimization of the modeled system. By using the right acquisition function, the search space can be efficiently navigated to find the optimal candidates. Moreover, the optimization requires only a limited number of samples. The main aim of this paper is to present this method, which is demonstrated on the optimization of a 1.5 kW induction machine with time-consuming calculations. The machine optimization approach is not the main focus here, as this method can be effectively applied to any machine design or even any optimization approach. Furthermore, two possible approaches of machine optimization using this method are presented here.

  • Název v anglickém jazyce

    Multi-Objective Bayesian Optimization of Squirrel-Cage Induction Machine

  • Popis výsledku anglicky

    In electrical engineering, a design of electrical machine using numerical methods, such as Finite element method, is a common practice. Electrical machines are complex multi-physical systems where for finding the optimal sets of designs solutions, called Pareto fronts, a very effective approach is to use multi-objective optimization. The most popular method for multi-objective optimization of machine design is the use of numerical optimization algorithms such as NSGA-II. However, due to the time-consuming nature of induction machines simulations, this approach is not very effective. This paper addresses this issue by proposing machine learning as a solution, specifically utilizing Multi-objective Bayesian optimization. This optimization method has been used in many industries as an efficient global optimization of the modeled system. By using the right acquisition function, the search space can be efficiently navigated to find the optimal candidates. Moreover, the optimization requires only a limited number of samples. The main aim of this paper is to present this method, which is demonstrated on the optimization of a 1.5 kW induction machine with time-consuming calculations. The machine optimization approach is not the main focus here, as this method can be effectively applied to any machine design or even any optimization approach. Furthermore, two possible approaches of machine optimization using this method are presented here.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2024 International Conference on Electrical Machines (ICEM)

  • ISBN

    979-8-3503-7060-7

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

    „“-„“

  • Název nakladatele

    IEEE

  • Místo vydání

    Turín, Itálie

  • Místo konání akce

    Torino

  • Datum konání akce

    1. 9. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku