Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Graph Neural Networks in Epilepsy Surgery

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151625" target="_blank" >RIV/00216305:26220/24:PU151625 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_2.pdf" target="_blank" >https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_2.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.13164/eeict.2024.57" target="_blank" >10.13164/eeict.2024.57</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Graph Neural Networks in Epilepsy Surgery

  • Popis výsledku v původním jazyce

    Epilepsy surgery presents a viable treatment option for patients with drug-resistant epilepsy, necessitating precise localization of the epileptogenic zone (EZ) for optimal outcomes. As the limitations of currently used localization methods lead to a seizure-free postsurgical outcome only in about 60% of cases, this study introduces a novel approach to EZ localization by leveraging Graph Neural Networks (GNNs) for the analysis of interictal stereoelectroencephalography (SEEG) data. A GraphSAGE-based model for identifying resected seizure-onset zone (SOZ) electrode contacts was applied to a clinical dataset comprising 17 patients from two institutions. This study uniquely focuses on the use of interictal SEEG recordings, aiming to streamline the presurgical monitoring process and minimize risks and costs associated with prolonged SEEG monitoring. Through this innovative approach, the GNN model demonstrated promising results, achieving an Area Under the Receiver Operating Characteristic (AUROC) score of 0.830 and an Area Under the Precision-Recall Curve (AUPRC) of 0.432. These outcomes along with the potential of GNNs in leveraging the patient-specific electrode placement highlight their potential in enhancing the accuracy of EZ localization in drug-resistant epilepsy patients.

  • Název v anglickém jazyce

    Graph Neural Networks in Epilepsy Surgery

  • Popis výsledku anglicky

    Epilepsy surgery presents a viable treatment option for patients with drug-resistant epilepsy, necessitating precise localization of the epileptogenic zone (EZ) for optimal outcomes. As the limitations of currently used localization methods lead to a seizure-free postsurgical outcome only in about 60% of cases, this study introduces a novel approach to EZ localization by leveraging Graph Neural Networks (GNNs) for the analysis of interictal stereoelectroencephalography (SEEG) data. A GraphSAGE-based model for identifying resected seizure-onset zone (SOZ) electrode contacts was applied to a clinical dataset comprising 17 patients from two institutions. This study uniquely focuses on the use of interictal SEEG recordings, aiming to streamline the presurgical monitoring process and minimize risks and costs associated with prolonged SEEG monitoring. Through this innovative approach, the GNN model demonstrated promising results, achieving an Area Under the Receiver Operating Characteristic (AUROC) score of 0.830 and an Area Under the Precision-Recall Curve (AUPRC) of 0.432. These outcomes along with the potential of GNNs in leveraging the patient-specific electrode placement highlight their potential in enhancing the accuracy of EZ localization in drug-resistant epilepsy patients.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20601 - Medical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings II of the 30th Conference STUDENT EEICT 2024: Selected papers

  • ISBN

    978-80-214-6230-4

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

    57-60

  • Název nakladatele

    Brno University of Technology, Faculty of Electrical Engineering and Communication

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    23. 4. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku