Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

NREM sleep is the state of vigilance that best identifies the epileptogenic zone in the interictal electroencephalogram

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F19%3A00535709" target="_blank" >RIV/68081731:_____/19:00535709 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216224:14110/19:00113177 RIV/00159816:_____/19:00072897

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/abs/10.1111/epi.16377" target="_blank" >https://onlinelibrary.wiley.com/doi/abs/10.1111/epi.16377</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/epi.16377" target="_blank" >10.1111/epi.16377</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    NREM sleep is the state of vigilance that best identifies the epileptogenic zone in the interictal electroencephalogram

  • Popis výsledku v původním jazyce

    Interictal epileptiform anomalies such as epileptiform discharges or high-frequency oscillations show marked variations across the sleep-wake cycle. This study investigates which state of vigilance is the best to localize the epileptogenic zone (EZ) in interictal intracranial electroencephalography (EEG). Thirty patients with drug-resistant epilepsy undergoing stereo-EEG (SEEG)/sleep recording and subsequent open surgery were included, 13 patients (43.3%) had good surgical outcome (Engel class I). Sleep was scored following standard criteria. Multiple features based on the interictal EEG (interictal epileptiform discharges, high-frequency oscillations, univariate and bivariate features) were used to train a support vector machine (SVM) model to classify SEEG contacts placed in the EZ. The performance of the algorithm was evaluated by the mean area under the receiver-operating characteristic (ROC) curves (AUCs) and positive predictive values (PPVs) across 10-minute sections of wake, non-rapid eye movement sleep (NREM) stages N2 and N3, REM sleep, and their combination. Highest AUCs were achieved in NREM sleep stages N2 and N3 compared to wakefulness and REM (P <.01). There was no improvement when using a combination of all four states (P >.05), the best performing features in the combined state were selected from NREM sleep. There were differences between good (Engel I) and poor (Engel II-IV) outcomes in PPV (P <.05) and AUC (P <.01) across all states. The SVM multifeature approach outperformed spikes and high-frequency oscillations (P <.01) and resulted in results similar to those of the seizure-onset zone (SOZ, P >.05). Sleep improves the localization of the EZ with best identification obtained in NREM sleep stages N2 and N3. Results based on the multifeature classification in 10 minutes of NREM sleep were not different from the results achieved by the SOZ based on 12.7 days of seizure monitoring. This finding might ultimately result in a more time-efficient intracranial presurgical investigation of focal epilepsy.

  • Název v anglickém jazyce

    NREM sleep is the state of vigilance that best identifies the epileptogenic zone in the interictal electroencephalogram

  • Popis výsledku anglicky

    Interictal epileptiform anomalies such as epileptiform discharges or high-frequency oscillations show marked variations across the sleep-wake cycle. This study investigates which state of vigilance is the best to localize the epileptogenic zone (EZ) in interictal intracranial electroencephalography (EEG). Thirty patients with drug-resistant epilepsy undergoing stereo-EEG (SEEG)/sleep recording and subsequent open surgery were included, 13 patients (43.3%) had good surgical outcome (Engel class I). Sleep was scored following standard criteria. Multiple features based on the interictal EEG (interictal epileptiform discharges, high-frequency oscillations, univariate and bivariate features) were used to train a support vector machine (SVM) model to classify SEEG contacts placed in the EZ. The performance of the algorithm was evaluated by the mean area under the receiver-operating characteristic (ROC) curves (AUCs) and positive predictive values (PPVs) across 10-minute sections of wake, non-rapid eye movement sleep (NREM) stages N2 and N3, REM sleep, and their combination. Highest AUCs were achieved in NREM sleep stages N2 and N3 compared to wakefulness and REM (P <.01). There was no improvement when using a combination of all four states (P >.05), the best performing features in the combined state were selected from NREM sleep. There were differences between good (Engel I) and poor (Engel II-IV) outcomes in PPV (P <.05) and AUC (P <.01) across all states. The SVM multifeature approach outperformed spikes and high-frequency oscillations (P <.01) and resulted in results similar to those of the seizure-onset zone (SOZ, P >.05). Sleep improves the localization of the EZ with best identification obtained in NREM sleep stages N2 and N3. Results based on the multifeature classification in 10 minutes of NREM sleep were not different from the results achieved by the SOZ based on 12.7 days of seizure monitoring. This finding might ultimately result in a more time-efficient intracranial presurgical investigation of focal epilepsy.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20601 - Medical engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LTAUSA18056" target="_blank" >LTAUSA18056: Lokalizace epileptického ložiska a pokročilá analýza vysokofrekvenčního intrakraniálního EEG</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Epilepsia

  • ISSN

    0013-9580

  • e-ISSN

  • Svazek periodika

    60

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    2404-2415

  • Kód UT WoS článku

    000545973100008

  • EID výsledku v databázi Scopus

    2-s2.0-85074825684