Timing matters for accurate identification of the epileptogenic zone
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F24%3A00602818" target="_blank" >RIV/68081731:_____/24:00602818 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00159816:_____/24:00081585 RIV/00216224:14110/24:00136069
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1388245724000312" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1388245724000312</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.clinph.2024.01.007" target="_blank" >10.1016/j.clinph.2024.01.007</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Timing matters for accurate identification of the epileptogenic zone
Popis výsledku v původním jazyce
Objective: Interictal biomarkers of the epileptogenic zone (EZ) and their use in machine learning models open promising avenues for improvement of epilepsy surgery evaluation. Currently, most studies restrict their analysis to short segments of intracranial EEG (iEEG). Methods: We used 2381 hours of iEEG data from 25 patients to systematically select 5-minute segments across various interictal conditions. Then, we tested machine learning models for EZ localization using iEEG features calculated within these individual segments or across them and evaluated the performance by the area under the precision-recall curve (PRAUC). Results: On average, models achieved a score of 0.421 (the result of the chance classifier was 0.062). However, the PRAUC varied significantly across the segments (0.323-0.493). Overall, NREM sleep achieved the highest scores, with the best results of 0.493 in N2. When using data from all segments, the model performed significantly better than single segments, except NREM sleep segments. Conclusions: The model based on a short segment of iEEG recording can achieve similar results as a model based on prolonged recordings. The analyzed segment should, however, be carefully and systematically selected, preferably from NREM sleep. Significance: Random selection of short iEEG segments may give rise to inaccurate localization of the EZ. (c) 2024 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Timing matters for accurate identification of the epileptogenic zone
Popis výsledku anglicky
Objective: Interictal biomarkers of the epileptogenic zone (EZ) and their use in machine learning models open promising avenues for improvement of epilepsy surgery evaluation. Currently, most studies restrict their analysis to short segments of intracranial EEG (iEEG). Methods: We used 2381 hours of iEEG data from 25 patients to systematically select 5-minute segments across various interictal conditions. Then, we tested machine learning models for EZ localization using iEEG features calculated within these individual segments or across them and evaluated the performance by the area under the precision-recall curve (PRAUC). Results: On average, models achieved a score of 0.421 (the result of the chance classifier was 0.062). However, the PRAUC varied significantly across the segments (0.323-0.493). Overall, NREM sleep achieved the highest scores, with the best results of 0.493 in N2. When using data from all segments, the model performed significantly better than single segments, except NREM sleep segments. Conclusions: The model based on a short segment of iEEG recording can achieve similar results as a model based on prolonged recordings. The analyzed segment should, however, be carefully and systematically selected, preferably from NREM sleep. Significance: Random selection of short iEEG segments may give rise to inaccurate localization of the EZ. (c) 2024 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30210 - Clinical neurology
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Clinical Neurophysiology
ISSN
1388-2457
e-ISSN
1872-8952
Svazek periodika
161
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
IE - Irsko
Počet stran výsledku
9
Strana od-do
1-9
Kód UT WoS článku
001208751200001
EID výsledku v databázi Scopus
2-s2.0-85188190982