Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Detection of Room Occupancy in Smart Buildings

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151665" target="_blank" >RIV/00216305:26220/24:PU151665 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.radioeng.cz/fulltexts/2024/24_03_0432_0441.pdf" target="_blank" >https://www.radioeng.cz/fulltexts/2024/24_03_0432_0441.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.13164/re.2024.0432" target="_blank" >10.13164/re.2024.0432</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Detection of Room Occupancy in Smart Buildings

  • Popis výsledku v původním jazyce

    Recent advancements in occupancy and indoor environmental monitoring have encouraged the development of innovative solutions. This paper presents a~novel approach to room occupancy detection using Wi-Fi probe requests and machine learning techniques. We propose a~methodology that splits occupancy detection into two distinct subtasks: personnel presence detection, where the model predicts whether someone is present in the room, and occupancy level detection, which estimates the number of occupants on a~six-level scale (ranging from 1 person to up to 25 people) based on probe requests. To achieve this, we evaluated three types of neural networks: CNN (Convolutional Neural Network), LSTM (Long Short-Term Memory), and GRU (Gated Recurrent Unit). Our experimental results show that the GRU model exhibits superior performance in both tasks. For personnel presence detection, the GRU model achieves an~accuracy of 91.8%, outperforming the CNN and LSTM models with accuracies of 88.7% and 63.8%, respectively. This demonstrates the effectiveness of GRU in discerning room occupancy. Furthermore, for occupancy level detection, the GRU model achieves an~accuracy of~75.1%, surpassing the CNN and LSTM models with accuracies of 47.1% and 52.8%, respectively. This research contributes to the field of occupancy detection by providing a~cost-effective solution that utilizes existing Wi-Fi infrastructure and demonstrates the potential of machine learning techniques in accurately classifying room occupancy.

  • Název v anglickém jazyce

    Detection of Room Occupancy in Smart Buildings

  • Popis výsledku anglicky

    Recent advancements in occupancy and indoor environmental monitoring have encouraged the development of innovative solutions. This paper presents a~novel approach to room occupancy detection using Wi-Fi probe requests and machine learning techniques. We propose a~methodology that splits occupancy detection into two distinct subtasks: personnel presence detection, where the model predicts whether someone is present in the room, and occupancy level detection, which estimates the number of occupants on a~six-level scale (ranging from 1 person to up to 25 people) based on probe requests. To achieve this, we evaluated three types of neural networks: CNN (Convolutional Neural Network), LSTM (Long Short-Term Memory), and GRU (Gated Recurrent Unit). Our experimental results show that the GRU model exhibits superior performance in both tasks. For personnel presence detection, the GRU model achieves an~accuracy of 91.8%, outperforming the CNN and LSTM models with accuracies of 88.7% and 63.8%, respectively. This demonstrates the effectiveness of GRU in discerning room occupancy. Furthermore, for occupancy level detection, the GRU model achieves an~accuracy of~75.1%, surpassing the CNN and LSTM models with accuracies of 47.1% and 52.8%, respectively. This research contributes to the field of occupancy detection by providing a~cost-effective solution that utilizes existing Wi-Fi infrastructure and demonstrates the potential of machine learning techniques in accurately classifying room occupancy.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Radioengineering

  • ISSN

    1805-9600

  • e-ISSN

  • Svazek periodika

    33

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    10

  • Strana od-do

    432-441

  • Kód UT WoS článku

    001292738300010

  • EID výsledku v databázi Scopus

    2-s2.0-85200274352