Detection of Room Occupancy in Smart Buildings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151665" target="_blank" >RIV/00216305:26220/24:PU151665 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.radioeng.cz/fulltexts/2024/24_03_0432_0441.pdf" target="_blank" >https://www.radioeng.cz/fulltexts/2024/24_03_0432_0441.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13164/re.2024.0432" target="_blank" >10.13164/re.2024.0432</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detection of Room Occupancy in Smart Buildings
Popis výsledku v původním jazyce
Recent advancements in occupancy and indoor environmental monitoring have encouraged the development of innovative solutions. This paper presents a~novel approach to room occupancy detection using Wi-Fi probe requests and machine learning techniques. We propose a~methodology that splits occupancy detection into two distinct subtasks: personnel presence detection, where the model predicts whether someone is present in the room, and occupancy level detection, which estimates the number of occupants on a~six-level scale (ranging from 1 person to up to 25 people) based on probe requests. To achieve this, we evaluated three types of neural networks: CNN (Convolutional Neural Network), LSTM (Long Short-Term Memory), and GRU (Gated Recurrent Unit). Our experimental results show that the GRU model exhibits superior performance in both tasks. For personnel presence detection, the GRU model achieves an~accuracy of 91.8%, outperforming the CNN and LSTM models with accuracies of 88.7% and 63.8%, respectively. This demonstrates the effectiveness of GRU in discerning room occupancy. Furthermore, for occupancy level detection, the GRU model achieves an~accuracy of~75.1%, surpassing the CNN and LSTM models with accuracies of 47.1% and 52.8%, respectively. This research contributes to the field of occupancy detection by providing a~cost-effective solution that utilizes existing Wi-Fi infrastructure and demonstrates the potential of machine learning techniques in accurately classifying room occupancy.
Název v anglickém jazyce
Detection of Room Occupancy in Smart Buildings
Popis výsledku anglicky
Recent advancements in occupancy and indoor environmental monitoring have encouraged the development of innovative solutions. This paper presents a~novel approach to room occupancy detection using Wi-Fi probe requests and machine learning techniques. We propose a~methodology that splits occupancy detection into two distinct subtasks: personnel presence detection, where the model predicts whether someone is present in the room, and occupancy level detection, which estimates the number of occupants on a~six-level scale (ranging from 1 person to up to 25 people) based on probe requests. To achieve this, we evaluated three types of neural networks: CNN (Convolutional Neural Network), LSTM (Long Short-Term Memory), and GRU (Gated Recurrent Unit). Our experimental results show that the GRU model exhibits superior performance in both tasks. For personnel presence detection, the GRU model achieves an~accuracy of 91.8%, outperforming the CNN and LSTM models with accuracies of 88.7% and 63.8%, respectively. This demonstrates the effectiveness of GRU in discerning room occupancy. Furthermore, for occupancy level detection, the GRU model achieves an~accuracy of~75.1%, surpassing the CNN and LSTM models with accuracies of 47.1% and 52.8%, respectively. This research contributes to the field of occupancy detection by providing a~cost-effective solution that utilizes existing Wi-Fi infrastructure and demonstrates the potential of machine learning techniques in accurately classifying room occupancy.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Radioengineering
ISSN
1805-9600
e-ISSN
—
Svazek periodika
33
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
10
Strana od-do
432-441
Kód UT WoS článku
001292738300010
EID výsledku v databázi Scopus
2-s2.0-85200274352