Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Applying the Deep Learning Techniques to Solve Classification Tasks Using Gene Expression Data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F24%3A43898369" target="_blank" >RIV/44555601:13440/24:43898369 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10440636" target="_blank" >https://ieeexplore.ieee.org/document/10440636</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2024.3368070" target="_blank" >10.1109/ACCESS.2024.3368070</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Applying the Deep Learning Techniques to Solve Classification Tasks Using Gene Expression Data

  • Popis výsledku v původním jazyce

    This manuscript explores the application of deep learning (DL) techniques for classifying gene expression data. A key aspect of our research is the comparative analysis of various DL neural network architectures, including Convolution Neural Networks (CNN), Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) Recurrent Neural Networks (RNN), as well as hybrid models that combine these networks. We applied the Bayesian optimization algorithm using 5-fold cross-validation for optimal hyperparameter tuning, which is crucial for DL algorithm performance. Significantly, we have advanced the methods for applying RNNs in processing gene expression data, particularly focusing on LSTM and GRU types. Our study introduces also a novel hybrid quality criterion for data classification, calculated as a weighted sum of partial quality criteria, incorporating an integrated F1-score derived through the Harrington desirability method. Furthermore, we investigate hybrid models that leverage various DL methods, enhancing decision-making objectivity in sample identification. This model uses a step-by-step information processing procedure, initially applying different DL models to gene expression data and subsequently processing these through a CART-based classifier for final decision-making. Our experiments, performed on gene expression data from patients with eight cancer types and one subset with normal samples (without cancer), demonstrated that GRU-RNN-based models, particularly a two-layer GRU-RNN, achieved the highest classification efficacy, with an accuracy of 97.8% on the test dataset. The performance of this model exceeded that of other models, whose accuracy varied between 96.6% and 97.3%. Comparative analysis with other studies in this field suggests that the proposed techniques demonstrate higher efficacy compared to similar research regarding the application of DL models for cancer-type diagnosis.

  • Název v anglickém jazyce

    Applying the Deep Learning Techniques to Solve Classification Tasks Using Gene Expression Data

  • Popis výsledku anglicky

    This manuscript explores the application of deep learning (DL) techniques for classifying gene expression data. A key aspect of our research is the comparative analysis of various DL neural network architectures, including Convolution Neural Networks (CNN), Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) Recurrent Neural Networks (RNN), as well as hybrid models that combine these networks. We applied the Bayesian optimization algorithm using 5-fold cross-validation for optimal hyperparameter tuning, which is crucial for DL algorithm performance. Significantly, we have advanced the methods for applying RNNs in processing gene expression data, particularly focusing on LSTM and GRU types. Our study introduces also a novel hybrid quality criterion for data classification, calculated as a weighted sum of partial quality criteria, incorporating an integrated F1-score derived through the Harrington desirability method. Furthermore, we investigate hybrid models that leverage various DL methods, enhancing decision-making objectivity in sample identification. This model uses a step-by-step information processing procedure, initially applying different DL models to gene expression data and subsequently processing these through a CART-based classifier for final decision-making. Our experiments, performed on gene expression data from patients with eight cancer types and one subset with normal samples (without cancer), demonstrated that GRU-RNN-based models, particularly a two-layer GRU-RNN, achieved the highest classification efficacy, with an accuracy of 97.8% on the test dataset. The performance of this model exceeded that of other models, whose accuracy varied between 96.6% and 97.3%. Comparative analysis with other studies in this field suggests that the proposed techniques demonstrate higher efficacy compared to similar research regarding the application of DL models for cancer-type diagnosis.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    2024

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    28437-28448

  • Kód UT WoS článku

    001174249000001

  • EID výsledku v databázi Scopus

    2-s2.0-85186090110