Varroa destructor detection on honey bees using hyperspectral imagery
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151729" target="_blank" >RIV/00216305:26220/24:PU151729 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0168169924006100?pes=vor" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0168169924006100?pes=vor</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compag.2024.109219" target="_blank" >10.1016/j.compag.2024.109219</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Varroa destructor detection on honey bees using hyperspectral imagery
Popis výsledku v původním jazyce
Hyperspectral (HS) imagery in agriculture is becoming increasingly common. These images have the advantage of higher spectral resolution. Advanced spectral processing techniques are required to unlock the information potential in these HS images. The present paper introduces a method rooted in multivariate statistics designed to detect parasitic Varroa destructor mites on the body of western honey bee Apis mellifera, enabling easier and continuous monitoring of the bee hives. The present paper is the first to utilize hyperspectral imagery for the task, previous studies existing only for multispectral imagery. The methodology explores unsupervised (K-means++) and recently developed supervised (Kernel Flows-Partial Least-Squares, KF-PLS) methods for parasitic identification. Additionally, in light of the emergence of custom-band multispectral cameras, the present research outlines a strategy for identifying the specific wavelengths necessary for effective bee-mite separation, suitable for implementation in a custom-band camera. Illustrated with a real-case dataset, our findings demonstrate that as few as four spectral bands are sufficient for accurate parasite identification.
Název v anglickém jazyce
Varroa destructor detection on honey bees using hyperspectral imagery
Popis výsledku anglicky
Hyperspectral (HS) imagery in agriculture is becoming increasingly common. These images have the advantage of higher spectral resolution. Advanced spectral processing techniques are required to unlock the information potential in these HS images. The present paper introduces a method rooted in multivariate statistics designed to detect parasitic Varroa destructor mites on the body of western honey bee Apis mellifera, enabling easier and continuous monitoring of the bee hives. The present paper is the first to utilize hyperspectral imagery for the task, previous studies existing only for multispectral imagery. The methodology explores unsupervised (K-means++) and recently developed supervised (Kernel Flows-Partial Least-Squares, KF-PLS) methods for parasitic identification. Additionally, in light of the emergence of custom-band multispectral cameras, the present research outlines a strategy for identifying the specific wavelengths necessary for effective bee-mite separation, suitable for implementation in a custom-band camera. Illustrated with a real-case dataset, our findings demonstrate that as few as four spectral bands are sufficient for accurate parasite identification.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTERS AND ELECTRONICS IN AGRICULTURE
ISSN
0168-1699
e-ISSN
1872-7107
Svazek periodika
224
Číslo periodika v rámci svazku
září 2024
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
„“-„“
Kód UT WoS článku
001271974900001
EID výsledku v databázi Scopus
2-s2.0-85198275920