Enhancing Cybersecurity Curriculum Development: AI-Driven Mapping and Optimization Techniques
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151833" target="_blank" >RIV/00216305:26220/24:PU151833 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/doi/10.1145/3664476.3670467" target="_blank" >https://dl.acm.org/doi/10.1145/3664476.3670467</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3664476.3670467" target="_blank" >10.1145/3664476.3670467</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhancing Cybersecurity Curriculum Development: AI-Driven Mapping and Optimization Techniques
Popis výsledku v původním jazyce
Cybersecurity has become important, especially during the last decade. The significant growth of information technologies, internet of things, and digitalization in general, increased the interest in cybersecurity professionals significantly. While the demand for cybersecurity professionals is high, there is a significant shortage of these professionals due to the very diverse landscape of knowledge and the complex curriculum accreditation process. In this article, we introduce a novel AI-driven mapping and optimization solution enabling cybersecurity curriculum development. Our solution leverages machine learning and integer linear programming optimization, offering an automated, intuitive, and user-friendly approach. It is designed to align with the European Cybersecurity Skills Framework (ECSF) released by the European Union Agency for Cybersecurity (ENISA) in 2022. Notably, our innovative mapping methodology enables the seamless adaptation of ECSF to existing curricula and addresses evolving industry needs and trend. We conduct a case study using the university curriculum from Brno University of Technology in the Czech Republic to showcase the efficacy of our approach. The results demonstrate the extent of curriculum coverage according to ECSF profiles and the optimization progress achieved through our methodology.
Název v anglickém jazyce
Enhancing Cybersecurity Curriculum Development: AI-Driven Mapping and Optimization Techniques
Popis výsledku anglicky
Cybersecurity has become important, especially during the last decade. The significant growth of information technologies, internet of things, and digitalization in general, increased the interest in cybersecurity professionals significantly. While the demand for cybersecurity professionals is high, there is a significant shortage of these professionals due to the very diverse landscape of knowledge and the complex curriculum accreditation process. In this article, we introduce a novel AI-driven mapping and optimization solution enabling cybersecurity curriculum development. Our solution leverages machine learning and integer linear programming optimization, offering an automated, intuitive, and user-friendly approach. It is designed to align with the European Cybersecurity Skills Framework (ECSF) released by the European Union Agency for Cybersecurity (ENISA) in 2022. Notably, our innovative mapping methodology enables the seamless adaptation of ECSF to existing curricula and addresses evolving industry needs and trend. We conduct a case study using the university curriculum from Brno University of Technology in the Czech Republic to showcase the efficacy of our approach. The results demonstrate the extent of curriculum coverage according to ECSF profiles and the optimization progress achieved through our methodology.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/VJ03030003" target="_blank" >VJ03030003: Rozvoj mezinárodních partnerství pro vzdělávání a trénink v kybernetické bezpečnosti</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ARES '24: Proceedings of the 19th International Conference on Availability, Reliability and Security
ISBN
979-8-4007-1718-5
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
1-10
Název nakladatele
Association for Computing Machinery
Místo vydání
neuveden
Místo konání akce
Vídeň
Datum konání akce
30. 7. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—