Identification of industrial devices based on payload
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151835" target="_blank" >RIV/00216305:26220/24:PU151835 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/doi/10.1145/3664476.3670462" target="_blank" >https://dl.acm.org/doi/10.1145/3664476.3670462</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3664476.3670462" target="_blank" >10.1145/3664476.3670462</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Identification of industrial devices based on payload
Popis výsledku v původním jazyce
Identification of industrial devices based on their behavior in network communication is important from a cybersecurity perspective in two areas: attack prevention and digital forensics. In both areas, device identification falls under asset management or asset tracking. Due to the impact of active scanning on these networks, particularly in terms of latency, it is important to use passive scanning in industrial networks. For passive identification, statistical learning algorithms are nowadays the most appropriate. The aim of this paper is to demonstrate the potential for passive identification of PLC devices using statistical learning based on network communication, specifically the payload of the packet. Individual statistical parameters from 15 minutes of traffic based on payload entropy were used to create the features. Three scenarios were performed and the XGBoost algorithm was used for evaluation. In the best scenario, the model achieved an accuracy score of 83% to identify individual devices.
Název v anglickém jazyce
Identification of industrial devices based on payload
Popis výsledku anglicky
Identification of industrial devices based on their behavior in network communication is important from a cybersecurity perspective in two areas: attack prevention and digital forensics. In both areas, device identification falls under asset management or asset tracking. Due to the impact of active scanning on these networks, particularly in terms of latency, it is important to use passive scanning in industrial networks. For passive identification, statistical learning algorithms are nowadays the most appropriate. The aim of this paper is to demonstrate the potential for passive identification of PLC devices using statistical learning based on network communication, specifically the payload of the packet. Individual statistical parameters from 15 minutes of traffic based on payload entropy were used to create the features. Three scenarios were performed and the XGBoost algorithm was used for evaluation. In the best scenario, the model achieved an accuracy score of 83% to identify individual devices.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/FW06010490" target="_blank" >FW06010490: Krypto portál chytrého měření</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ARES '24: Proceedings of the 19th International Conference on Availability, Reliability and Security
ISBN
979-8-4007-1718-5
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
1-9
Název nakladatele
Association for Computing Machinery
Místo vydání
New York, NY, USA
Místo konání akce
Vídeň
Datum konání akce
30. 7. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—