Evaluating Application?Layer Classification Using a Machine Learning Technique Over Different High Speed Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F10%3A00006953" target="_blank" >RIV/63839172:_____/10:00006953 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluating Application?Layer Classification Using a Machine Learning Technique Over Different High Speed Networks
Popis výsledku v původním jazyce
Classification based on machine learning offers an alternative method to methods based on port or payload based techniques. It is based on statistical features computed from network flows. Several works investigated the efficiency of machine learning techniques and found algorithms suitable for network classification. A classifier based on machine learning is built by learning from a training data set that consists of data from known application traces. In this paper, we evaluate the efficiency of application-layer classification based on C4.5 machine learning algorithm used for classification network flows from different high speed networks, such as 100 Mbit, 1 Gbit and 10 Gbit networks. We find a significant decrease in the classification efficiencywhen classifier built for one network is used to classify other network. We recommend to build classifier from data collected from all available networks for best results. Howeve
Název v anglickém jazyce
Evaluating Application?Layer Classification Using a Machine Learning Technique Over Different High Speed Networks
Popis výsledku anglicky
Classification based on machine learning offers an alternative method to methods based on port or payload based techniques. It is based on statistical features computed from network flows. Several works investigated the efficiency of machine learning techniques and found algorithms suitable for network classification. A classifier based on machine learning is built by learning from a training data set that consists of data from known application traces. In this paper, we evaluate the efficiency of application-layer classification based on C4.5 machine learning algorithm used for classification network flows from different high speed networks, such as 100 Mbit, 1 Gbit and 10 Gbit networks. We find a significant decrease in the classification efficiencywhen classifier built for one network is used to classify other network. We recommend to build classifier from data collected from all available networks for best results. Howeve
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICSNC 2010 - The Fifth International Conference on Systems and Networks Communications
ISBN
978-0-7695-4145-7
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
—
Název nakladatele
IEEE Computer Society Press
Místo vydání
Nice
Místo konání akce
Nice
Datum konání akce
22. 8. 2010
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—