Automated Annotation of Network Traffic with Data from Web Browser
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00358647" target="_blank" >RIV/68407700:21240/22:00358647 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automated Annotation of Network Traffic with Data from Web Browser
Popis výsledku v původním jazyce
Encrypted traffic classification requires Machine Learning (ML) algorithms and a large amount of data to learn patterns and classify network communication without decrypting it. For the learning stage of ML models, we need a reliable and trusted dataset that delivers the ground truth for the whole classification. However, building a dataset is a very complicated and time-consuming task that stops ML to be used in the production environment of target networks. The aim of this work is to address this topic for network flow annotation using web traffic data. This paper introduces to problematics of network IP flow monitoring, analysis and classification. This problem is demonstrated on HTTP and HTTPS protocols. Moreover, this work describes a technique of data collection from web browsers and their pairing with traffic flows to create a reliable annotated dataset automatically
Název v anglickém jazyce
Automated Annotation of Network Traffic with Data from Web Browser
Popis výsledku anglicky
Encrypted traffic classification requires Machine Learning (ML) algorithms and a large amount of data to learn patterns and classify network communication without decrypting it. For the learning stage of ML models, we need a reliable and trusted dataset that delivers the ground truth for the whole classification. However, building a dataset is a very complicated and time-consuming task that stops ML to be used in the production environment of target networks. The aim of this work is to address this topic for network flow annotation using web traffic data. This paper introduces to problematics of network IP flow monitoring, analysis and classification. This problem is demonstrated on HTTP and HTTPS protocols. Moreover, this work describes a technique of data collection from web browsers and their pairing with traffic flows to create a reliable annotated dataset automatically
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/VJ02010024" target="_blank" >VJ02010024: Analýza šifrovaného provozu pomocí síťových toků</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů