Chaotic systems based on higher-order oscillatory equations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU152147" target="_blank" >RIV/00216305:26220/24:PU152147 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.nature.com/articles/s41598-024-72034-6" target="_blank" >https://www.nature.com/articles/s41598-024-72034-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-024-72034-6" target="_blank" >10.1038/s41598-024-72034-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Chaotic systems based on higher-order oscillatory equations
Popis výsledku v původním jazyce
This paper discusses the design process toward new lumped chaotic systems that originates in higher‑order ordinary differential equations commonly used as description of ideal oscillators. In investigated third‑order case, two chaotic oscillators were constructed. These systems are dual in the sense of vector field geometry local to fixed points. The existence of robust chaos was proved by both standard routines of numerical analysis and practical measurement. For the fourth‑order oscillatory equation, the concept based on interaction between superinductor and supercapacitor was examined in detail. Since both “superelements” are active, the nonlinearity essential to the evolution of chaos is fully passive. It is demonstrated that complex motion is robust and does not represent long transient behavior or numerical artefact. The existence of chaos was verified using standard quantifiers of the flow, such as the largest Lyapunov exponents, recurrence plots, approximate entropy and sensitivity calculation. A good final agreement between theoretical assumptions and practical results will be concluded, on a visual comparison basis.
Název v anglickém jazyce
Chaotic systems based on higher-order oscillatory equations
Popis výsledku anglicky
This paper discusses the design process toward new lumped chaotic systems that originates in higher‑order ordinary differential equations commonly used as description of ideal oscillators. In investigated third‑order case, two chaotic oscillators were constructed. These systems are dual in the sense of vector field geometry local to fixed points. The existence of robust chaos was proved by both standard routines of numerical analysis and practical measurement. For the fourth‑order oscillatory equation, the concept based on interaction between superinductor and supercapacitor was examined in detail. Since both “superelements” are active, the nonlinearity essential to the evolution of chaos is fully passive. It is demonstrated that complex motion is robust and does not represent long transient behavior or numerical artefact. The existence of chaos was verified using standard quantifiers of the flow, such as the largest Lyapunov exponents, recurrence plots, approximate entropy and sensitivity calculation. A good final agreement between theoretical assumptions and practical results will be concluded, on a visual comparison basis.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific Reports
ISSN
2045-2322
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
21
Strana od-do
21075-21095
Kód UT WoS článku
001317044700063
EID výsledku v databázi Scopus
2-s2.0-85203453088