Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Planar Schrodinger equations with critical exponential growth

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU152705" target="_blank" >RIV/00216305:26220/24:PU152705 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s00526-024-02852-z" target="_blank" >https://doi.org/10.1007/s00526-024-02852-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00526-024-02852-z" target="_blank" >10.1007/s00526-024-02852-z</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Planar Schrodinger equations with critical exponential growth

  • Popis výsledku v původním jazyce

    In this paper, we study the following quasilinear Schrodinger equation: -epsilon(2)Delta u + V(x)u - epsilon(2)Delta(u(2))u = g(u), x is an element of R-2, where epsilon > 0 is a small parameter, V is an element of C(R-2, R) is uniformly positive and allowed to be unbounded from above, and g is an element of C(R, R) has a critical exponential growth at infinity. In the autonomous case, when epsilon > 0 is fixed and V(x) equivalent to V-0 is an element of R+, we first present a remarkable relationship between the existence of least energy solutions and the range of V-0 without any monotonicity conditions on g. Based on some new strategies, we establish the existence and concentration of positive solutions for the above singularly perturbed problem. In particular, our approach not only permits to extend the previous results to a wider class of potentials V and source terms g, but also allows a uniform treatment of two kinds of representative nonlinearities that g has extra restrictions at infinity or near the origin, namely lim inf(|t|->+infinity)tg(t)/e(0)(alpha)t4 or g(u) >= C-q,C-V u(q-1) with q > 4 and C-q,C- V > 0 is an implicit value depending on q, V and the best constant of the embedding H-1(R-2) subset of L-q(R-2), considered in the existing literature. To the best of our knowledge, there have not been established any similar results, even for simpler semilinear Schrodinger equations. We believe that our approach could be adopted and modified to treat more general elliptic partial differential equations involving critical exponential growth.

  • Název v anglickém jazyce

    Planar Schrodinger equations with critical exponential growth

  • Popis výsledku anglicky

    In this paper, we study the following quasilinear Schrodinger equation: -epsilon(2)Delta u + V(x)u - epsilon(2)Delta(u(2))u = g(u), x is an element of R-2, where epsilon > 0 is a small parameter, V is an element of C(R-2, R) is uniformly positive and allowed to be unbounded from above, and g is an element of C(R, R) has a critical exponential growth at infinity. In the autonomous case, when epsilon > 0 is fixed and V(x) equivalent to V-0 is an element of R+, we first present a remarkable relationship between the existence of least energy solutions and the range of V-0 without any monotonicity conditions on g. Based on some new strategies, we establish the existence and concentration of positive solutions for the above singularly perturbed problem. In particular, our approach not only permits to extend the previous results to a wider class of potentials V and source terms g, but also allows a uniform treatment of two kinds of representative nonlinearities that g has extra restrictions at infinity or near the origin, namely lim inf(|t|->+infinity)tg(t)/e(0)(alpha)t4 or g(u) >= C-q,C-V u(q-1) with q > 4 and C-q,C- V > 0 is an implicit value depending on q, V and the best constant of the embedding H-1(R-2) subset of L-q(R-2), considered in the existing literature. To the best of our knowledge, there have not been established any similar results, even for simpler semilinear Schrodinger equations. We believe that our approach could be adopted and modified to treat more general elliptic partial differential equations involving critical exponential growth.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS

  • ISSN

    0944-2669

  • e-ISSN

    1432-0835

  • Svazek periodika

    63

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    46

  • Strana od-do

    „“-„“

  • Kód UT WoS článku

    001352835400001

  • EID výsledku v databázi Scopus

    2-s2.0-85209784997