Planar Schrodinger equations with critical exponential growth
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU152705" target="_blank" >RIV/00216305:26220/24:PU152705 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00526-024-02852-z" target="_blank" >https://doi.org/10.1007/s00526-024-02852-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00526-024-02852-z" target="_blank" >10.1007/s00526-024-02852-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Planar Schrodinger equations with critical exponential growth
Popis výsledku v původním jazyce
In this paper, we study the following quasilinear Schrodinger equation: -epsilon(2)Delta u + V(x)u - epsilon(2)Delta(u(2))u = g(u), x is an element of R-2, where epsilon > 0 is a small parameter, V is an element of C(R-2, R) is uniformly positive and allowed to be unbounded from above, and g is an element of C(R, R) has a critical exponential growth at infinity. In the autonomous case, when epsilon > 0 is fixed and V(x) equivalent to V-0 is an element of R+, we first present a remarkable relationship between the existence of least energy solutions and the range of V-0 without any monotonicity conditions on g. Based on some new strategies, we establish the existence and concentration of positive solutions for the above singularly perturbed problem. In particular, our approach not only permits to extend the previous results to a wider class of potentials V and source terms g, but also allows a uniform treatment of two kinds of representative nonlinearities that g has extra restrictions at infinity or near the origin, namely lim inf(|t|->+infinity)tg(t)/e(0)(alpha)t4 or g(u) >= C-q,C-V u(q-1) with q > 4 and C-q,C- V > 0 is an implicit value depending on q, V and the best constant of the embedding H-1(R-2) subset of L-q(R-2), considered in the existing literature. To the best of our knowledge, there have not been established any similar results, even for simpler semilinear Schrodinger equations. We believe that our approach could be adopted and modified to treat more general elliptic partial differential equations involving critical exponential growth.
Název v anglickém jazyce
Planar Schrodinger equations with critical exponential growth
Popis výsledku anglicky
In this paper, we study the following quasilinear Schrodinger equation: -epsilon(2)Delta u + V(x)u - epsilon(2)Delta(u(2))u = g(u), x is an element of R-2, where epsilon > 0 is a small parameter, V is an element of C(R-2, R) is uniformly positive and allowed to be unbounded from above, and g is an element of C(R, R) has a critical exponential growth at infinity. In the autonomous case, when epsilon > 0 is fixed and V(x) equivalent to V-0 is an element of R+, we first present a remarkable relationship between the existence of least energy solutions and the range of V-0 without any monotonicity conditions on g. Based on some new strategies, we establish the existence and concentration of positive solutions for the above singularly perturbed problem. In particular, our approach not only permits to extend the previous results to a wider class of potentials V and source terms g, but also allows a uniform treatment of two kinds of representative nonlinearities that g has extra restrictions at infinity or near the origin, namely lim inf(|t|->+infinity)tg(t)/e(0)(alpha)t4 or g(u) >= C-q,C-V u(q-1) with q > 4 and C-q,C- V > 0 is an implicit value depending on q, V and the best constant of the embedding H-1(R-2) subset of L-q(R-2), considered in the existing literature. To the best of our knowledge, there have not been established any similar results, even for simpler semilinear Schrodinger equations. We believe that our approach could be adopted and modified to treat more general elliptic partial differential equations involving critical exponential growth.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
ISSN
0944-2669
e-ISSN
1432-0835
Svazek periodika
63
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
46
Strana od-do
„“-„“
Kód UT WoS článku
001352835400001
EID výsledku v databázi Scopus
2-s2.0-85209784997