Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Polygenic Risk Score Simulation: A case study of sudden cardiovascular diseases derived from literature insights

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU154807" target="_blank" >RIV/00216305:26220/24:PU154807 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/abstract/document/10821852" target="_blank" >https://ieeexplore.ieee.org/abstract/document/10821852</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/BIBM62325.2024.10821852" target="_blank" >10.1109/BIBM62325.2024.10821852</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Polygenic Risk Score Simulation: A case study of sudden cardiovascular diseases derived from literature insights

  • Popis výsledku v původním jazyce

    Sudden cardiovascular diseases, including sudden cardiac arrest (SCA) and myocardial infarction (MI), remain among the leading causes of mortality worldwide. This study employs synthetic data simulations to develop polygenic risk scores (PRS) for improved identification of individuals at elevated risk. Leveraging genetic and phenotypic information from established literature, we modeled associations between multiple single nucleotide polymorphisms (SNPs) and the risk of sudden cardiovascular diseases. Our case study demonstrated that individuals with higher PRS values have a significantly increased risk of SCA and MI, with SNPs such as LTA (252A>G) identified as notable contributors. Additionally, combining PRS with traditional cardiovascular risk factors, such as smoking and diabetes, improved predictive accuracy, underscoring the value of integrating genetic data with clinical variables. These findings highlight the cumulative effect of genetic predispositions in determining cardiovascular risk and suggest potential applications of PRS models in personalized medicine to enhance preventive strategies. While promising, the study recognizes limitations related to the use of synthetic data and the need for validation in diverse, real-world populations. Future research should focus on refining these models and exploring additional genetic markers to further improve prediction capabilities.

  • Název v anglickém jazyce

    Polygenic Risk Score Simulation: A case study of sudden cardiovascular diseases derived from literature insights

  • Popis výsledku anglicky

    Sudden cardiovascular diseases, including sudden cardiac arrest (SCA) and myocardial infarction (MI), remain among the leading causes of mortality worldwide. This study employs synthetic data simulations to develop polygenic risk scores (PRS) for improved identification of individuals at elevated risk. Leveraging genetic and phenotypic information from established literature, we modeled associations between multiple single nucleotide polymorphisms (SNPs) and the risk of sudden cardiovascular diseases. Our case study demonstrated that individuals with higher PRS values have a significantly increased risk of SCA and MI, with SNPs such as LTA (252A>G) identified as notable contributors. Additionally, combining PRS with traditional cardiovascular risk factors, such as smoking and diabetes, improved predictive accuracy, underscoring the value of integrating genetic data with clinical variables. These findings highlight the cumulative effect of genetic predispositions in determining cardiovascular risk and suggest potential applications of PRS models in personalized medicine to enhance preventive strategies. While promising, the study recognizes limitations related to the use of synthetic data and the need for validation in diverse, real-world populations. Future research should focus on refining these models and exploring additional genetic markers to further improve prediction capabilities.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

  • ISBN

    979-8-3503-8622-6

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    5080-5087

  • Název nakladatele

    Neuveden

  • Místo vydání

    neuveden

  • Místo konání akce

    Lisbon

  • Datum konání akce

    3. 12. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku