Polygenic Risk Score Simulation: A case study of sudden cardiovascular diseases derived from literature insights
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU154807" target="_blank" >RIV/00216305:26220/24:PU154807 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/abstract/document/10821852" target="_blank" >https://ieeexplore.ieee.org/abstract/document/10821852</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/BIBM62325.2024.10821852" target="_blank" >10.1109/BIBM62325.2024.10821852</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Polygenic Risk Score Simulation: A case study of sudden cardiovascular diseases derived from literature insights
Popis výsledku v původním jazyce
Sudden cardiovascular diseases, including sudden cardiac arrest (SCA) and myocardial infarction (MI), remain among the leading causes of mortality worldwide. This study employs synthetic data simulations to develop polygenic risk scores (PRS) for improved identification of individuals at elevated risk. Leveraging genetic and phenotypic information from established literature, we modeled associations between multiple single nucleotide polymorphisms (SNPs) and the risk of sudden cardiovascular diseases. Our case study demonstrated that individuals with higher PRS values have a significantly increased risk of SCA and MI, with SNPs such as LTA (252A>G) identified as notable contributors. Additionally, combining PRS with traditional cardiovascular risk factors, such as smoking and diabetes, improved predictive accuracy, underscoring the value of integrating genetic data with clinical variables. These findings highlight the cumulative effect of genetic predispositions in determining cardiovascular risk and suggest potential applications of PRS models in personalized medicine to enhance preventive strategies. While promising, the study recognizes limitations related to the use of synthetic data and the need for validation in diverse, real-world populations. Future research should focus on refining these models and exploring additional genetic markers to further improve prediction capabilities.
Název v anglickém jazyce
Polygenic Risk Score Simulation: A case study of sudden cardiovascular diseases derived from literature insights
Popis výsledku anglicky
Sudden cardiovascular diseases, including sudden cardiac arrest (SCA) and myocardial infarction (MI), remain among the leading causes of mortality worldwide. This study employs synthetic data simulations to develop polygenic risk scores (PRS) for improved identification of individuals at elevated risk. Leveraging genetic and phenotypic information from established literature, we modeled associations between multiple single nucleotide polymorphisms (SNPs) and the risk of sudden cardiovascular diseases. Our case study demonstrated that individuals with higher PRS values have a significantly increased risk of SCA and MI, with SNPs such as LTA (252A>G) identified as notable contributors. Additionally, combining PRS with traditional cardiovascular risk factors, such as smoking and diabetes, improved predictive accuracy, underscoring the value of integrating genetic data with clinical variables. These findings highlight the cumulative effect of genetic predispositions in determining cardiovascular risk and suggest potential applications of PRS models in personalized medicine to enhance preventive strategies. While promising, the study recognizes limitations related to the use of synthetic data and the need for validation in diverse, real-world populations. Future research should focus on refining these models and exploring additional genetic markers to further improve prediction capabilities.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
ISBN
979-8-3503-8622-6
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
5080-5087
Název nakladatele
Neuveden
Místo vydání
neuveden
Místo konání akce
Lisbon
Datum konání akce
3. 12. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—