Constraint minimizers of mass critical fractional Kirchhoff equations: concentration and uniqueness
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F25%3APU156196" target="_blank" >RIV/00216305:26220/25:PU156196 - isvavai.cz</a>
Výsledek na webu
<a href="https://iopscience-iop-org.ezproxy.lib.vutbr.cz/article/10.1088/1361-6544/adbc3b/pdf" target="_blank" >https://iopscience-iop-org.ezproxy.lib.vutbr.cz/article/10.1088/1361-6544/adbc3b/pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-6544/adbc3b" target="_blank" >10.1088/1361-6544/adbc3b</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Constraint minimizers of mass critical fractional Kirchhoff equations: concentration and uniqueness
Popis výsledku v původním jazyce
This paper focuses on the constraint minimization problem associated with the fractional Kirchhoff equation { ( a + b ∫ ℝ N | ( − Δ ) s 2 u | 2 d x ) ( − Δ ) s u + | x | 2 u = μ u + β u 8 s N + 1 in ℝ N , [ 6 p t ] ∫ ℝ N | u | 2 d x = 1 , where s ∈ ( N / 4 , 1 ) , N = 2 , 3 , a ⩾ 0 , b > 0 are constants, μ ∈ R is the corresponding Lagrange multiplier and ( − Δ ) s is the fractional Laplacian operator, 8 s / N + 1 is the corresponding mass critical exponent. The purpose of this paper is threefold: to establish the existence and non-existence of the L2-constraint minimizers to the degenerate fractional Kirchhoff problem, that is a = 0, to prove some classical concentration behaviors of constraint minimizers and to reveal the local uniqueness of constraint minimizers of above problem under double nonlocal effect. In particular, we will give some energy estimates, decay estimates and uniform regularity to find that the maximal point of constraint minimizer concentrates on the bottom point of the homogeneous potential. Furthermore, we introduce several new techniques based on the combination of the localization method of ( − Δ ) s and by establishing the nonlocal Pohozăev identity, which allow us to get over some new challenges due to the nonlocal property of ( − Δ ) s and the fact that ∫ R N | ( − Δ ) s 2 u | 2 d x ( − Δ ) s u does not vanish as a ↘ 0 . We believe that these techniques will have some potential applications in various related problems.
Název v anglickém jazyce
Constraint minimizers of mass critical fractional Kirchhoff equations: concentration and uniqueness
Popis výsledku anglicky
This paper focuses on the constraint minimization problem associated with the fractional Kirchhoff equation { ( a + b ∫ ℝ N | ( − Δ ) s 2 u | 2 d x ) ( − Δ ) s u + | x | 2 u = μ u + β u 8 s N + 1 in ℝ N , [ 6 p t ] ∫ ℝ N | u | 2 d x = 1 , where s ∈ ( N / 4 , 1 ) , N = 2 , 3 , a ⩾ 0 , b > 0 are constants, μ ∈ R is the corresponding Lagrange multiplier and ( − Δ ) s is the fractional Laplacian operator, 8 s / N + 1 is the corresponding mass critical exponent. The purpose of this paper is threefold: to establish the existence and non-existence of the L2-constraint minimizers to the degenerate fractional Kirchhoff problem, that is a = 0, to prove some classical concentration behaviors of constraint minimizers and to reveal the local uniqueness of constraint minimizers of above problem under double nonlocal effect. In particular, we will give some energy estimates, decay estimates and uniform regularity to find that the maximal point of constraint minimizer concentrates on the bottom point of the homogeneous potential. Furthermore, we introduce several new techniques based on the combination of the localization method of ( − Δ ) s and by establishing the nonlocal Pohozăev identity, which allow us to get over some new challenges due to the nonlocal property of ( − Δ ) s and the fact that ∫ R N | ( − Δ ) s 2 u | 2 d x ( − Δ ) s u does not vanish as a ↘ 0 . We believe that these techniques will have some potential applications in various related problems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2025
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
NONLINEARITY
ISSN
0951-7715
e-ISSN
1361-6544
Svazek periodika
38
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
46
Strana od-do
„“-„“
Kód UT WoS článku
001443870900001
EID výsledku v databázi Scopus
2-s2.0-105000363566