High Energy Solutions for p-Kirchhoff Elliptic Problems with Hardy–Littlewood–Sobolev Nonlinearity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00139428" target="_blank" >RIV/00216224:14310/24:00139428 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s12220-024-01637-2" target="_blank" >https://link.springer.com/article/10.1007/s12220-024-01637-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12220-024-01637-2" target="_blank" >10.1007/s12220-024-01637-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
High Energy Solutions for p-Kirchhoff Elliptic Problems with Hardy–Littlewood–Sobolev Nonlinearity
Popis výsledku v původním jazyce
This article deals with the study of the following Kirchhoff-Choquard problem: begin{equation*} begin{array}{cc} displaystyle Mleft(, intlimits_{mathbb{R}^N}|nabla u|^pright) (-Δ_p) u + V(x)|u|^{p-2}u = left(, intlimits_{mathbb{R}^N}frac{F(u)(y)}{|x-y|^μ},dy right) f(u), ;;text{in} ; mathbb{R}^N, u > 0, ;; text{in} ; mathbb{R}^N, end{array} end{equation*} where $M$ models Kirchhoff-type nonlinear term of the form $M(t) = a + bt^{θ-1}$, where $a, b > 0$ are given constants; $1<p<N$, $Δ_p = text{div}(|nabla u|^{p-2}nabla u)$ is the $p$-Laplacian operator; potential $V in C^2(mathbb{R}^N)$; $f$ is monotonic function with suitable growth conditions. We obtain the existence of a positive high energy solution for $θin left[1, frac{2N-μ}{N-p}right) $ via the Pohožaev manifold and linking theorem. Apart from this, we also studied the radial symmetry of solutions of the associated limit problem.
Název v anglickém jazyce
High Energy Solutions for p-Kirchhoff Elliptic Problems with Hardy–Littlewood–Sobolev Nonlinearity
Popis výsledku anglicky
This article deals with the study of the following Kirchhoff-Choquard problem: begin{equation*} begin{array}{cc} displaystyle Mleft(, intlimits_{mathbb{R}^N}|nabla u|^pright) (-Δ_p) u + V(x)|u|^{p-2}u = left(, intlimits_{mathbb{R}^N}frac{F(u)(y)}{|x-y|^μ},dy right) f(u), ;;text{in} ; mathbb{R}^N, u > 0, ;; text{in} ; mathbb{R}^N, end{array} end{equation*} where $M$ models Kirchhoff-type nonlinear term of the form $M(t) = a + bt^{θ-1}$, where $a, b > 0$ are given constants; $1<p<N$, $Δ_p = text{div}(|nabla u|^{p-2}nabla u)$ is the $p$-Laplacian operator; potential $V in C^2(mathbb{R}^N)$; $f$ is monotonic function with suitable growth conditions. We obtain the existence of a positive high energy solution for $θin left[1, frac{2N-μ}{N-p}right) $ via the Pohožaev manifold and linking theorem. Apart from this, we also studied the radial symmetry of solutions of the associated limit problem.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-17403S" target="_blank" >GA22-17403S: Nelineární Schrödingerovy rovnice a systémy se singulárním potenciálem</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Geometric Analysis
ISSN
1050-6926
e-ISSN
1559-002X
Svazek periodika
34
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
36
Strana od-do
1-36
Kód UT WoS článku
001215445700001
EID výsledku v databázi Scopus
2-s2.0-85191555701