Zjednodušené progresivní dolování dat
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F07%3APU70875" target="_blank" >RIV/00216305:26230/07:PU70875 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26230/07:PU73636
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Simplified Progressive Data Mining
Popis výsledku v původním jazyce
There are huge amounts of data stored in databases, but it is very difficult to make decisions based on this data. We propose the OLAM SE system (Self Explaining On-Line Analytical Mining) that is similar to the Han's OLAM [5] in the idea of interactivedata mining. The contribution is to simplify on-line analytical data mining to professionals, who understand their data but want more significant, interesting and useful information. It is done by shielding internal concepts (associations, classifications, characterizations) and thresholds (supports, confidences) from the user and by a simple graphical interface that suggests most relevant items. <p>OLAM SE determines minimum support value from required cover of data with usage of entropy coding principle. This is automatically applied on the structure based on given conceptual hierarchy where present. We also determine the maximum threshold to avoid explaining knowledge that is obvious. Major part of data is thus described by frequent
Název v anglickém jazyce
Simplified Progressive Data Mining
Popis výsledku anglicky
There are huge amounts of data stored in databases, but it is very difficult to make decisions based on this data. We propose the OLAM SE system (Self Explaining On-Line Analytical Mining) that is similar to the Han's OLAM [5] in the idea of interactivedata mining. The contribution is to simplify on-line analytical data mining to professionals, who understand their data but want more significant, interesting and useful information. It is done by shielding internal concepts (associations, classifications, characterizations) and thresholds (supports, confidences) from the user and by a simple graphical interface that suggests most relevant items. <p>OLAM SE determines minimum support value from required cover of data with usage of entropy coding principle. This is automatically applied on the structure based on given conceptual hierarchy where present. We also determine the maximum threshold to avoid explaining knowledge that is obvious. Major part of data is thus described by frequent
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2007
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 16th International Conference on Systems Science
ISBN
978-83-7493-340-7
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
378-387
Název nakladatele
Wroclaw University of Technology
Místo vydání
Wroclaw
Místo konání akce
Wroclaw
Datum konání akce
4. 9. 2007
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—