Fast Approximate Spoken Term Detection from Sequence of Phonemes
Popis výsledku
We investigate the detection of spoken terms in conversa-
tional speech using phoneme recognition with the objective
of achieving smaller index size as well as faster search speed.
Speech is processed and indexed as a sequence of one best
phoneme sequence. We propose the use of a probabilistic
pronunciation model for the search term to compensate for
the errors in the recognition of phonemes. This model is de-
rived using the pronunciation of the word and the phoneme
confusion matrix. Experiments are performed on the con-
versational telephone speech database distributed by NIST
for the 2006 spoken term detection. We achieve about 1500
times smaller index size and 14 times faster search speed
compared to the system using phoneme lattices, at the cost
of relatively lower detection performance.
Klíčová slova
Spoken term detectionprobabilistic pronunciation modelphoneme recognitionconfusion matrix
Identifikátory výsledku
Kód výsledku v IS VaVaI
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fast Approximate Spoken Term Detection from Sequence of Phonemes
Popis výsledku v původním jazyce
We investigate the detection of spoken terms in conversa-
tional speech using phoneme recognition with the objective
of achieving smaller index size as well as faster search speed.
Speech is processed and indexed as a sequence of one best
phoneme sequence. We propose the use of a probabilistic
pronunciation model for the search term to compensate for
the errors in the recognition of phonemes. This model is de-
rived using the pronunciation of the word and the phoneme
confusion matrix. Experiments are performed on the con-
versational telephone speech database distributed by NIST
for the 2006 spoken term detection. We achieve about 1500
times smaller index size and 14 times faster search speed
compared tothe system using phoneme lattices, at the cost
of relatively lower detection performance.Název v anglickém jazyce
Fast Approximate Spoken Term Detection from Sequence of Phonemes
Popis výsledku anglicky
We investigate the detection of spoken terms in conversa-
tional speech using phoneme recognition with the objective
of achieving smaller index size as well as faster search speed.
Speech is processed and indexed as a sequence of one best
phoneme sequence. We propose the use of a probabilistic
pronunciation model for the search term to compensate for
the errors in the recognition of phonemes. This model is de-
rived using the pronunciation of the word and the phoneme
confusion matrix. Experiments are performed on the con-
versational telephone speech database distributed by NIST
for the 2006 spoken term detection. We achieve about 1500
times smaller index size and 14 times faster search speed
compared tothe system using phoneme lattices, at the cost
of relatively lower detection performance.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The 31st Annual International ACM SIGIR Conference 20-24 July 2008, Singapore
ISBN
978-90-365-2697-5
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
—
Název nakladatele
Association for Computing Machinery
Místo vydání
Singapore
Místo konání akce
Singapur
Datum konání akce
20. 7. 2008
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—
Základní informace
Druh výsledku
D - Stať ve sborníku
CEP
JC - Počítačový hardware a software
Rok uplatnění
2008