Deep LSTM Spoken Term Detection using Wav2Vec 2.0 Recognizer
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43965704" target="_blank" >RIV/49777513:23520/22:43965704 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.isca-speech.org/archive/interspeech_2022/svec22_interspeech.html" target="_blank" >https://www.isca-speech.org/archive/interspeech_2022/svec22_interspeech.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21437/Interspeech.2022-10409" target="_blank" >10.21437/Interspeech.2022-10409</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep LSTM Spoken Term Detection using Wav2Vec 2.0 Recognizer
Popis výsledku v původním jazyce
In recent years, the standard hybrid DNN-HMM speech recognizers are outperformed by the end-to-end speech recognition systems. One of the very promising approaches is the grapheme Wav2Vec 2.0 model, which uses the self-supervised pretraining approach combined with transfer learning of the fine-tuned speech recognizer. Since it lacks the pronunciation vocabulary and language model, the approach is suitable for tasks where obtaining such models is not easy or almost impossible. In this paper, we use the Wav2Vec speech recognizer in the task of spoken term detection over a large set of spoken documents. The method employs a deep LSTM network which maps the recognized hypothesis and the searched term into a shared pronunciation embedding space in which the term occurrences and the assigned scores are easily computed. The paper describes a bootstrapping approach that allows the transfer of the knowledge contained in traditional pronunciation vocabulary of DNN-HMM hybrid ASR into the context of grapheme-based Wav2Vec. The proposed method outperforms the previously published system based on the combination of the DNN-HMM hybrid ASR and phoneme recognizer by a large margin on the MALACH data in both English and Czech languages.
Název v anglickém jazyce
Deep LSTM Spoken Term Detection using Wav2Vec 2.0 Recognizer
Popis výsledku anglicky
In recent years, the standard hybrid DNN-HMM speech recognizers are outperformed by the end-to-end speech recognition systems. One of the very promising approaches is the grapheme Wav2Vec 2.0 model, which uses the self-supervised pretraining approach combined with transfer learning of the fine-tuned speech recognizer. Since it lacks the pronunciation vocabulary and language model, the approach is suitable for tasks where obtaining such models is not easy or almost impossible. In this paper, we use the Wav2Vec speech recognizer in the task of spoken term detection over a large set of spoken documents. The method employs a deep LSTM network which maps the recognized hypothesis and the searched term into a shared pronunciation embedding space in which the term occurrences and the assigned scores are easily computed. The paper describes a bootstrapping approach that allows the transfer of the knowledge contained in traditional pronunciation vocabulary of DNN-HMM hybrid ASR into the context of grapheme-based Wav2Vec. The proposed method outperforms the previously published system based on the combination of the DNN-HMM hybrid ASR and phoneme recognizer by a large margin on the MALACH data in both English and Czech languages.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/VJ01010108" target="_blank" >VJ01010108: Robustní zpracování nahrávek pro operativu a bezpečnost</a><br>
Návaznosti
—
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
ISBN
—
ISSN
2308-457X
e-ISSN
—
Počet stran výsledku
5
Strana od-do
1886-1890
Název nakladatele
International Speech Communication Association
Místo vydání
New York
Místo konání akce
Incheon, Korea
Datum konání akce
18. 9. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—