Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Parallel Training of Neural Networks for Speech Recognition

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F10%3APU89639" target="_blank" >RIV/00216305:26230/10:PU89639 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Parallel Training of Neural Networks for Speech Recognition

  • Popis výsledku v původním jazyce

    In this paper we describe parallel implementation of ANN training procedure based on block mode back-propagation learning algorithm. Two different approaches to parallelization were implemented. The first is data parallelization using POSIX threads, it is suitable for multi-core computers. The second is node parallelization using high performance SIMD architecture of GPU with CUDA, suitable for CUDA enabled computers. We compare the speed-up of both approaches by learning typically-sized network on thereal-world phoneme-state classification task, showing nearly 10 times reduction when using CUDA version, while the 8-core server with multi-thread version gives only 4 times reduction. In both cases we compared to an already BLAS optimized implementation. The training tool will be released as Open-Source software under project name TNet.

  • Název v anglickém jazyce

    Parallel Training of Neural Networks for Speech Recognition

  • Popis výsledku anglicky

    In this paper we describe parallel implementation of ANN training procedure based on block mode back-propagation learning algorithm. Two different approaches to parallelization were implemented. The first is data parallelization using POSIX threads, it is suitable for multi-core computers. The second is node parallelization using high performance SIMD architecture of GPU with CUDA, suitable for CUDA enabled computers. We compare the speed-up of both approaches by learning typically-sized network on thereal-world phoneme-state classification task, showing nearly 10 times reduction when using CUDA version, while the 8-core server with multi-thread version gives only 4 times reduction. In both cases we compared to an already BLAS optimized implementation. The training tool will be released as Open-Source software under project name TNet.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JC - Počítačový hardware a software

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 11th Annual Conference of the International Speech Communication Association (INTERSPEECH 2010)

  • ISBN

  • ISSN

    1990-9772

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

  • Název nakladatele

    International Speech Communication Association

  • Místo vydání

    Makuhari, Chiba

  • Místo konání akce

    Tokyo

  • Datum konání akce

    26. 9. 2010

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku