Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A novel estimation of feature-space MLLR for full_covariance models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F10%3APU91964" target="_blank" >RIV/00216305:26230/10:PU91964 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A novel estimation of feature-space MLLR for full_covariance models

  • Popis výsledku v původním jazyce

    In this paper we present a novel approach for estimating featurespace maximum likelihood linear regression (fMLLR) transforms for full-covariance Gaussian models by directly maximizing the likelihood function by repeated line search in the direction of the gradient. We do this in a pre-transformed parameter space such that an approximation to the expected Hessian is proportional to the unit matrix. The proposed algorithm is as efficient or more efficient than standard approaches, and is more flexible because it can naturally be combined with sets of basis transforms and with full covariance and subspace precision and mean (SPAM) models.

  • Název v anglickém jazyce

    A novel estimation of feature-space MLLR for full_covariance models

  • Popis výsledku anglicky

    In this paper we present a novel approach for estimating featurespace maximum likelihood linear regression (fMLLR) transforms for full-covariance Gaussian models by directly maximizing the likelihood function by repeated line search in the direction of the gradient. We do this in a pre-transformed parameter space such that an approximation to the expected Hessian is proportional to the unit matrix. The proposed algorithm is as efficient or more efficient than standard approaches, and is more flexible because it can naturally be combined with sets of basis transforms and with full covariance and subspace precision and mean (SPAM) models.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JC - Počítačový hardware a software

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/FR-TI1%2F034" target="_blank" >FR-TI1/034: Multilingvální rozpoznávání a vyhledávání v řeči pro elektronické slovníky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proc. International Conference on Acoustics, Speech, and Signal Processing

  • ISBN

    978-1-4244-4296-6

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

  • Název nakladatele

    IEEE Signal Processing Society

  • Místo vydání

    Dallas

  • Místo konání akce

    Dallas

  • Datum konání akce

    14. 3. 2010

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku