Inspired by Bertillon - Recognition Based on Anatomical Features from 3D Face Scans
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F11%3APU96114" target="_blank" >RIV/00216305:26230/11:PU96114 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Inspired by Bertillon - Recognition Based on Anatomical Features from 3D Face Scans
Popis výsledku v původním jazyce
We present an automatic 3D face recognition algorithm that is inspired by Alphonse Bertillon's anthropometry. Our recognition pipeline consists of several steps. First, the facial landmarks such as the tip of the nose or the inner eye corners are detected. Subsequently the head rotation is compensated during the orientation normalization process. The facial features are extracted by performing 61 different measures. We also present a feature evaluation function that rates individual components of the feature vector. Finally, our results are compared with two other 3D face recognition methods. We show that the multi-algorithmic system consisting of the anatomical-based recognition together with the eigenfaces method and the recognition using histogram-based features reaches significantly better results than any of the employed methods individually.
Název v anglickém jazyce
Inspired by Bertillon - Recognition Based on Anatomical Features from 3D Face Scans
Popis výsledku anglicky
We present an automatic 3D face recognition algorithm that is inspired by Alphonse Bertillon's anthropometry. Our recognition pipeline consists of several steps. First, the facial landmarks such as the tip of the nose or the inner eye corners are detected. Subsequently the head rotation is compensated during the orientation normalization process. The facial features are extracted by performing 61 different measures. We also present a feature evaluation function that rates individual components of the feature vector. Finally, our results are compared with two other 3D face recognition methods. We show that the multi-algorithmic system consisting of the anatomical-based recognition together with the eigenfaces method and the recognition using histogram-based features reaches significantly better results than any of the employed methods individually.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 3rd International Workshop on Security and Communication Networks
ISBN
978-82-91313-67-2
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
53-58
Název nakladatele
Gjovik University College
Místo vydání
Gjovik
Místo konání akce
Gjovik
Datum konání akce
18. 5. 2011
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—