Implementing Random Indexing on GPU
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F11%3APU96124" target="_blank" >RIV/00216305:26230/11:PU96124 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Implementing Random Indexing on GPU
Popis výsledku v původním jazyce
Vector space models (also word space models or term space models) are algebraic models, used for representing text documents as vectors of terms. They have received much attention recently as they have wide spectrum of applications, including informationfiltering, information retrieval, indexing and relevancy ranking. They can be advantageous over the other representations because vector spaces are mathematically well defined and there’s large set of tools for manipulating them. Random Indexing is one of methods used for calculating vector space models from set of documents, based on distributional statistics of term cooccurrences. To produce useful results it may therefore require large amounts of data and significant computational power. We present an efficient implementation of Random Indexing on GPU, allowing fast training even on large datasets. It is only limited by amount of memory available on GPU, some techniques to overcome this limitation are sugg
Název v anglickém jazyce
Implementing Random Indexing on GPU
Popis výsledku anglicky
Vector space models (also word space models or term space models) are algebraic models, used for representing text documents as vectors of terms. They have received much attention recently as they have wide spectrum of applications, including informationfiltering, information retrieval, indexing and relevancy ranking. They can be advantageous over the other representations because vector spaces are mathematically well defined and there’s large set of tools for manipulating them. Random Indexing is one of methods used for calculating vector space models from set of documents, based on distributional statistics of term cooccurrences. To produce useful results it may therefore require large amounts of data and significant computational power. We present an efficient implementation of Random Indexing on GPU, allowing fast training even on large datasets. It is only limited by amount of memory available on GPU, some techniques to overcome this limitation are sugg
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/7H10012" target="_blank" >7H10012: Embedded Service Oriented Monitoring, Diagnostics and Control: Towards the Asset-aware and Self-Recovery Factory</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
High Performance Computing Symposium 2011
ISBN
978-1-61782-840-9
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
127-135
Název nakladatele
SCS Publication House
Místo vydání
Boston
Místo konání akce
Boston, MA, USA
Datum konání akce
4. 4. 2011
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—