Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deciding Conditional Termination

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F12%3APU98150" target="_blank" >RIV/00216305:26230/12:PU98150 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deciding Conditional Termination

  • Popis výsledku v původním jazyce

    This paper addresses the problem of conditional termination, which is that of defining the set of initial configurations from which a given program terminates. First we define the dual set, of initial configurations, from which a non-terminating execution exists, as the greatest fixpoint of the pre-image of the transition relation. This definition enables the representation of this set, whenever the closed form of the relation of the loop is definable in a logic that has quantifier elimination. This entails the decidability of the termination problem for such loops. Second, we present effective ways to compute the weakest precondition for non-termination for difference bounds and octagonal (non-deterministic) relations, by avoiding complex quantifier eliminations. We also investigate the existence of linear ranking functions for such loops. Finally, we study the class of linear affine relations and give a method of under-approximating the termination precondition for a non-trivial subc

  • Název v anglickém jazyce

    Deciding Conditional Termination

  • Popis výsledku anglicky

    This paper addresses the problem of conditional termination, which is that of defining the set of initial configurations from which a given program terminates. First we define the dual set, of initial configurations, from which a non-terminating execution exists, as the greatest fixpoint of the pre-image of the transition relation. This definition enables the representation of this set, whenever the closed form of the relation of the loop is definable in a logic that has quantifier elimination. This entails the decidability of the termination problem for such loops. Second, we present effective ways to compute the weakest precondition for non-termination for difference bounds and octagonal (non-deterministic) relations, by avoiding complex quantifier eliminations. We also investigate the existence of linear ranking functions for such loops. Finally, we study the class of linear affine relations and give a method of under-approximating the termination precondition for a non-trivial subc

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2012

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Lecture Notes in Computer Science

  • ISSN

    0302-9743

  • e-ISSN

  • Svazek periodika

    2012

  • Číslo periodika v rámci svazku

    7214

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    16

  • Strana od-do

    252-266

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus