Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Robust motion segmentation for on-line application

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F12%3APU98205" target="_blank" >RIV/00216305:26230/12:PU98205 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Robust motion segmentation for on-line application

  • Popis výsledku v původním jazyce

    This paper presents a novel approach for on-line video motion segmentation. Common methods were designed for off-line processing, where time to process one frame is not so important and varies from minutes to hours. The motivation of our work was an application in robotic perception, where a high computational speed is required. The main contribution of this work is an adaptation of existing methods to a higher computational speed and on-line processing. The proposed approach is based on sparse features, we utilized the KLT tracker to obtain their trajectories. A RANSAC-based method is used for initial motion segmentation, resulting motion groups are partitioned by a spatial-proximity constraints. The correspondence of motion groups across frames is solved by one-frame label propagation in forward and backward directions. Finally, an approximation of dense image segmentation is obtained by using the Voronoi tessellation.

  • Název v anglickém jazyce

    Robust motion segmentation for on-line application

  • Popis výsledku anglicky

    This paper presents a novel approach for on-line video motion segmentation. Common methods were designed for off-line processing, where time to process one frame is not so important and varies from minutes to hours. The motivation of our work was an application in robotic perception, where a high computational speed is required. The main contribution of this work is an adaptation of existing methods to a higher computational speed and on-line processing. The proposed approach is based on sparse features, we utilized the KLT tracker to obtain their trajectories. A RANSAC-based method is used for initial motion segmentation, resulting motion groups are partitioned by a spatial-proximity constraints. The correspondence of motion groups across frames is solved by one-frame label propagation in forward and backward directions. Finally, an approximation of dense image segmentation is obtained by using the Voronoi tessellation.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/7H10011" target="_blank" >7H10011: Robust & Safe Mobile Co-operative Autonomous Systems</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2012

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of WSCG'12

  • ISBN

    978-80-86943-79-4

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

    205-212

  • Název nakladatele

    University of West Bohemia in Pilsen

  • Místo vydání

    Plzeň

  • Místo konání akce

    Plzeň

  • Datum konání akce

    25. 6. 2012

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku