Learning to Predict Localized Distortions in Rendered Images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F13%3APU106440" target="_blank" >RIV/00216305:26230/13:PU106440 - isvavai.cz</a>
Výsledek na webu
<a href="http://cadik.posvete.cz" target="_blank" >http://cadik.posvete.cz</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/cgf.12248" target="_blank" >10.1111/cgf.12248</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Learning to Predict Localized Distortions in Rendered Images
Popis výsledku v původním jazyce
In this work, we present an analysis of feature descriptors for objective image quality assessment. We explore a large space of possible features including components of existing image quality metrics as well as many traditional computer vision and statistical features. Additionally, we propose new features motivated by human perception and we analyze visual saliency maps acquired using an eye tracker in our user experiments. The discriminative power of the features is assessed by means of a machine learning framework revealing the importance of each feature for image quality assessment task. Furthermore, we propose a new data-driven full-reference image quality metric which outperforms current state-of-the-art metrics. The metric was trained on subjective ground truth data combining two publicly available datasets. For the sake of completeness we create a new testing synthetic dataset including experimentally measured subjective distortion maps. Finally, using the same machine-learning framework we optimize the parameters of popular existing metrics.
Název v anglickém jazyce
Learning to Predict Localized Distortions in Rendered Images
Popis výsledku anglicky
In this work, we present an analysis of feature descriptors for objective image quality assessment. We explore a large space of possible features including components of existing image quality metrics as well as many traditional computer vision and statistical features. Additionally, we propose new features motivated by human perception and we analyze visual saliency maps acquired using an eye tracker in our user experiments. The discriminative power of the features is assessed by means of a machine learning framework revealing the importance of each feature for image quality assessment task. Furthermore, we propose a new data-driven full-reference image quality metric which outperforms current state-of-the-art metrics. The metric was trained on subjective ground truth data combining two publicly available datasets. For the sake of completeness we create a new testing synthetic dataset including experimentally measured subjective distortion maps. Finally, using the same machine-learning framework we optimize the parameters of popular existing metrics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LD12027" target="_blank" >LD12027: Pořizování a zpracování HDR obrazů ? Acquisition and processing of HDR images</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTER GRAPHICS FORUM
ISSN
0167-7055
e-ISSN
1467-8659
Svazek periodika
2013
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
401-410
Kód UT WoS článku
000327310800042
EID výsledku v databázi Scopus
—