Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Tumor Detection of Breast Tissue Using Random Forest with Principal Component Analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63573658" target="_blank" >RIV/70883521:28140/23:63573658 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1109/ICETAS59148.2023.10346582" target="_blank" >http://dx.doi.org/10.1109/ICETAS59148.2023.10346582</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICETAS59148.2023.10346582" target="_blank" >10.1109/ICETAS59148.2023.10346582</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Tumor Detection of Breast Tissue Using Random Forest with Principal Component Analysis

  • Popis výsledku v původním jazyce

    When it comes to cancer-related mortality, breast cancer is the most common and predominant kind in women; lung cancer is the most common. It ranks second overall. Global scientists have been working very hard to fight this illness for a long time. Furthermore, significant advancements have been achieved in the fields of machine learning and data mining for the extraction and synthesis of insightful knowledge, even from extremely complicated data sources. Machine learning models may carry out a number of functions, including clustering, classification, and prediction, by using the knowledge obtained from data. In this study, we examine the relationship between a dataset&apos;s several features and a diagnosis of breast cancer. We use five different variables extracted from X-ray images in the dataset to predict the existence of breast cancer using a supervised learning classification technique called Random Forest. The open-source web repository Kaggle served as the source of this dataset. We use Principal Component Analysis (PCA), a dimensionality reduction method, on the data prior to putting the Machine Learning algorithm into practice. We then assess the performance of the Machine Learning algorithm using measures like accuracy, precision, recall, F1-score, and support. Additionally, we compare the model&apos;s output with Random Forest and examine the performance metrics it produces with and without PCA analysis

  • Název v anglickém jazyce

    Tumor Detection of Breast Tissue Using Random Forest with Principal Component Analysis

  • Popis výsledku anglicky

    When it comes to cancer-related mortality, breast cancer is the most common and predominant kind in women; lung cancer is the most common. It ranks second overall. Global scientists have been working very hard to fight this illness for a long time. Furthermore, significant advancements have been achieved in the fields of machine learning and data mining for the extraction and synthesis of insightful knowledge, even from extremely complicated data sources. Machine learning models may carry out a number of functions, including clustering, classification, and prediction, by using the knowledge obtained from data. In this study, we examine the relationship between a dataset&apos;s several features and a diagnosis of breast cancer. We use five different variables extracted from X-ray images in the dataset to predict the existence of breast cancer using a supervised learning classification technique called Random Forest. The open-source web repository Kaggle served as the source of this dataset. We use Principal Component Analysis (PCA), a dimensionality reduction method, on the data prior to putting the Machine Learning algorithm into practice. We then assess the performance of the Machine Learning algorithm using measures like accuracy, precision, recall, F1-score, and support. Additionally, we compare the model&apos;s output with Random Forest and examine the performance metrics it produces with and without PCA analysis

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    International Conference on Engineering Technologies and Applied Sciences: Shaping the Future of Technology through Smart Computing and Engineering, ICETAS 2023

  • ISBN

    979-8-3503-2710-6

  • ISSN

    2769-450X

  • e-ISSN

    2769-4518

  • Počet stran výsledku

    7

  • Strana od-do

    1-7

  • Název nakladatele

    Institute of Electrical and Electronics Engineers Inc.

  • Místo vydání

    Piscataway, New Jersey

  • Místo konání akce

    Bahrain

  • Datum konání akce

    25. 10. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku