Tumor Detection of Breast Tissue Using Random Forest with Principal Component Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63573658" target="_blank" >RIV/70883521:28140/23:63573658 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/ICETAS59148.2023.10346582" target="_blank" >http://dx.doi.org/10.1109/ICETAS59148.2023.10346582</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICETAS59148.2023.10346582" target="_blank" >10.1109/ICETAS59148.2023.10346582</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tumor Detection of Breast Tissue Using Random Forest with Principal Component Analysis
Popis výsledku v původním jazyce
When it comes to cancer-related mortality, breast cancer is the most common and predominant kind in women; lung cancer is the most common. It ranks second overall. Global scientists have been working very hard to fight this illness for a long time. Furthermore, significant advancements have been achieved in the fields of machine learning and data mining for the extraction and synthesis of insightful knowledge, even from extremely complicated data sources. Machine learning models may carry out a number of functions, including clustering, classification, and prediction, by using the knowledge obtained from data. In this study, we examine the relationship between a dataset's several features and a diagnosis of breast cancer. We use five different variables extracted from X-ray images in the dataset to predict the existence of breast cancer using a supervised learning classification technique called Random Forest. The open-source web repository Kaggle served as the source of this dataset. We use Principal Component Analysis (PCA), a dimensionality reduction method, on the data prior to putting the Machine Learning algorithm into practice. We then assess the performance of the Machine Learning algorithm using measures like accuracy, precision, recall, F1-score, and support. Additionally, we compare the model's output with Random Forest and examine the performance metrics it produces with and without PCA analysis
Název v anglickém jazyce
Tumor Detection of Breast Tissue Using Random Forest with Principal Component Analysis
Popis výsledku anglicky
When it comes to cancer-related mortality, breast cancer is the most common and predominant kind in women; lung cancer is the most common. It ranks second overall. Global scientists have been working very hard to fight this illness for a long time. Furthermore, significant advancements have been achieved in the fields of machine learning and data mining for the extraction and synthesis of insightful knowledge, even from extremely complicated data sources. Machine learning models may carry out a number of functions, including clustering, classification, and prediction, by using the knowledge obtained from data. In this study, we examine the relationship between a dataset's several features and a diagnosis of breast cancer. We use five different variables extracted from X-ray images in the dataset to predict the existence of breast cancer using a supervised learning classification technique called Random Forest. The open-source web repository Kaggle served as the source of this dataset. We use Principal Component Analysis (PCA), a dimensionality reduction method, on the data prior to putting the Machine Learning algorithm into practice. We then assess the performance of the Machine Learning algorithm using measures like accuracy, precision, recall, F1-score, and support. Additionally, we compare the model's output with Random Forest and examine the performance metrics it produces with and without PCA analysis
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Conference on Engineering Technologies and Applied Sciences: Shaping the Future of Technology through Smart Computing and Engineering, ICETAS 2023
ISBN
979-8-3503-2710-6
ISSN
2769-450X
e-ISSN
2769-4518
Počet stran výsledku
7
Strana od-do
1-7
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
Piscataway, New Jersey
Místo konání akce
Bahrain
Datum konání akce
25. 10. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—