Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Alzheimer's disease progression detection model based on an early fusion of cost-effective multimodal data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10246991" target="_blank" >RIV/61989100:27240/21:10246991 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0167739X20329824?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167739X20329824?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.future.2020.10.005" target="_blank" >10.1016/j.future.2020.10.005</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Alzheimer's disease progression detection model based on an early fusion of cost-effective multimodal data

  • Popis výsledku v původním jazyce

    Alzheimer&apos;s disease (AD) is a severe neurodegenerative disease. The identification of patients at high risk of conversion from mild cognitive impairment to AD via earlier close monitoring, targeted investigations, and appropriate management is crucial. Recently, several machine learning (ML) algorithms have been used for AD progression detection. Most of these studies only utilized neuroimaging data from baseline visits. However, AD is a complex chronic disease, and usually, a medical expert will analyze the patient&apos;s whole history when making a progression diagnosis. Furthermore, neuroimaging data are always either limited or not available, especially in developing countries, due to their cost. In this paper, we compare the performance of five widely used ML algorithms, namely, the support vector machine, random forest, k-nearest neighbor, logistic regression, and decision tree to predict AD progression with a prediction horizon of 2.5 years. We use 1029 subjects from the Alzheimer&apos;s disease neuroimaging initiative (ADNI) database. In contrast to previous literature, our models are optimized using a collection of cost-effective time-series features including patient&apos;s comorbidities, cognitive scores, medication history, and demographics. Medication and comorbidity text data are semantically prepared. Drug terms are collected and cleaned before encoding using the therapeutic chemical classification (ATC) ontology, and then semantically aggregated to the appropriate level of granularity using ATC to ensure a less sparse dataset. Our experiments assert that the early fusion of comorbidity and medication features with other features reveals significant predictive power with all models. The random forest model achieves the most accurate performance compared to other models. This study is the first of its kind to investigate the role of such multimodal time-series data on AD prediction. (C) 2020 Elsevier B.V.

  • Název v anglickém jazyce

    Alzheimer's disease progression detection model based on an early fusion of cost-effective multimodal data

  • Popis výsledku anglicky

    Alzheimer&apos;s disease (AD) is a severe neurodegenerative disease. The identification of patients at high risk of conversion from mild cognitive impairment to AD via earlier close monitoring, targeted investigations, and appropriate management is crucial. Recently, several machine learning (ML) algorithms have been used for AD progression detection. Most of these studies only utilized neuroimaging data from baseline visits. However, AD is a complex chronic disease, and usually, a medical expert will analyze the patient&apos;s whole history when making a progression diagnosis. Furthermore, neuroimaging data are always either limited or not available, especially in developing countries, due to their cost. In this paper, we compare the performance of five widely used ML algorithms, namely, the support vector machine, random forest, k-nearest neighbor, logistic regression, and decision tree to predict AD progression with a prediction horizon of 2.5 years. We use 1029 subjects from the Alzheimer&apos;s disease neuroimaging initiative (ADNI) database. In contrast to previous literature, our models are optimized using a collection of cost-effective time-series features including patient&apos;s comorbidities, cognitive scores, medication history, and demographics. Medication and comorbidity text data are semantically prepared. Drug terms are collected and cleaned before encoding using the therapeutic chemical classification (ATC) ontology, and then semantically aggregated to the appropriate level of granularity using ATC to ensure a less sparse dataset. Our experiments assert that the early fusion of comorbidity and medication features with other features reveals significant predictive power with all models. The random forest model achieves the most accurate performance compared to other models. This study is the first of its kind to investigate the role of such multimodal time-series data on AD prediction. (C) 2020 Elsevier B.V.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Future Generation Computer Systems 22

  • ISSN

    0167-739X

  • e-ISSN

  • Svazek periodika

    115

  • Číslo periodika v rámci svazku

    FEB 2021

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    20

  • Strana od-do

    680-699

  • Kód UT WoS článku

    000592029600009

  • EID výsledku v databázi Scopus

    2-s2.0-85092710449