Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deep learning methods to detect Alzheimer's disease from MRI: A systematic review

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10253060" target="_blank" >RIV/61989100:27240/23:10253060 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/10.1111/exsy.13463" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1111/exsy.13463</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/exsy.13463" target="_blank" >10.1111/exsy.13463</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deep learning methods to detect Alzheimer's disease from MRI: A systematic review

  • Popis výsledku v původním jazyce

    Alzheimer&apos;s disease (AD) is a progressive and irreversible neurodegenerative condition in the brain that affects memory, thinking, and behaviour. To overcome this problem, which according to the World Health Organization, is on the rise, creating strategies is essential to identify and predict the disease in its early stages before clinical manifestation. In addition to cognitive and mental tests, neuroimaging is promising in this field, especially in assessing brain matter loss. Therefore, computer-aided diagnosis systems have been imposed as fundamental tools to help imaging technicians as the diagnosis becomes less subjective and time-consuming. Thus, machine learning and deep learning (DL) techniques have come into play. In recent years, articles addressing the topic of Alzheimer&apos;s diagnosis through DL models are increasingly popular, with an exponential increase from year to year with increasingly higher accuracy values. However, the disease classification remains a challenging and progressing issue, not only in distinguishing between healthy controls and AD patients but mainly in differentiating intermediate stages such as mild cognitive impairment. Therefore, there is a need to develop more valuable and innovative techniques. This article presents an up-to-date systematic review of deep models to detect AD and its intermediate phase by evaluating magnetic resonance images. The DL models chosen by different authors are analysed, as well as their approaches regarding the used dataset and the data pre-processing and analysis techniques. (C) 2023 John Wiley &amp; Sons Ltd.

  • Název v anglickém jazyce

    Deep learning methods to detect Alzheimer's disease from MRI: A systematic review

  • Popis výsledku anglicky

    Alzheimer&apos;s disease (AD) is a progressive and irreversible neurodegenerative condition in the brain that affects memory, thinking, and behaviour. To overcome this problem, which according to the World Health Organization, is on the rise, creating strategies is essential to identify and predict the disease in its early stages before clinical manifestation. In addition to cognitive and mental tests, neuroimaging is promising in this field, especially in assessing brain matter loss. Therefore, computer-aided diagnosis systems have been imposed as fundamental tools to help imaging technicians as the diagnosis becomes less subjective and time-consuming. Thus, machine learning and deep learning (DL) techniques have come into play. In recent years, articles addressing the topic of Alzheimer&apos;s diagnosis through DL models are increasingly popular, with an exponential increase from year to year with increasingly higher accuracy values. However, the disease classification remains a challenging and progressing issue, not only in distinguishing between healthy controls and AD patients but mainly in differentiating intermediate stages such as mild cognitive impairment. Therefore, there is a need to develop more valuable and innovative techniques. This article presents an up-to-date systematic review of deep models to detect AD and its intermediate phase by evaluating magnetic resonance images. The DL models chosen by different authors are analysed, as well as their approaches regarding the used dataset and the data pre-processing and analysis techniques. (C) 2023 John Wiley &amp; Sons Ltd.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Expert Systems

  • ISSN

    0266-4720

  • e-ISSN

  • Svazek periodika

    Neuveden

  • Číslo periodika v rámci svazku

    září 2023

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    23

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85173507705