VGEN: Fast Vertical Mining of Sequential Generator Patterns
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F14%3APU111959" target="_blank" >RIV/00216305:26230/14:PU111959 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-10160-6_42" target="_blank" >http://dx.doi.org/10.1007/978-3-319-10160-6_42</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-10160-6_42" target="_blank" >10.1007/978-3-319-10160-6_42</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
VGEN: Fast Vertical Mining of Sequential Generator Patterns
Popis výsledku v původním jazyce
Sequential pattern mining is a popular data mining task with wide applications. However, the set of all sequential patterns can be very large. To discover fewer but more representative patterns, several compact representations of sequential patterns have been studied. The set of sequential generatorsis one the most popular representations. It was shown to provide higher accuracy for classification than using all or only closed sequential patterns. Furthermore, mining generators is a key step in several other data mining tasks such as sequential rule generation. However, mining generators is computationally expensive. To address this issue, we propose a novel mining algorithm namedVGEN (Vertical sequential GENerator miner). An experimental study on five real datasets shows that VGEN is up to two orders of magnitude faster than the state-of-the-art algorithms for sequential generator mining.
Název v anglickém jazyce
VGEN: Fast Vertical Mining of Sequential Generator Patterns
Popis výsledku anglicky
Sequential pattern mining is a popular data mining task with wide applications. However, the set of all sequential patterns can be very large. To discover fewer but more representative patterns, several compact representations of sequential patterns have been studied. The set of sequential generatorsis one the most popular representations. It was shown to provide higher accuracy for classification than using all or only closed sequential patterns. Furthermore, mining generators is a key step in several other data mining tasks such as sequential rule generation. However, mining generators is computationally expensive. To address this issue, we propose a novel mining algorithm namedVGEN (Vertical sequential GENerator miner). An experimental study on five real datasets shows that VGEN is up to two orders of magnitude faster than the state-of-the-art algorithms for sequential generator mining.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Data Warehousing and Knowledge Discovery
ISBN
978-3-319-10159-0
ISSN
—
e-ISSN
—
Počet stran výsledku
12
Strana od-do
476-488
Název nakladatele
Springer Verlag
Místo vydání
Munich
Místo konání akce
Mnichov
Datum konání akce
2. 9. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—