A novel approach for mining closed clickstream patterns
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F21%3A63544038" target="_blank" >RIV/70883521:28140/21:63544038 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.tandfonline.com/doi/full/10.1080/01969722.2020.1871225" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/01969722.2020.1871225</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/01969722.2020.1871225" target="_blank" >10.1080/01969722.2020.1871225</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A novel approach for mining closed clickstream patterns
Popis výsledku v původním jazyce
Closed sequential pattern (CSP) mining is an optimization technique in sequential pattern mining because they produce more compact representations. Additionally, the runtime and memory usage required for mining CSPs is much lower than the sequential pattern mining. This task has fascinated numerous researchers. In this study, we propose a novel approach for closed clickstream pattern mining using C-List (CCPC) data structure. Closed clickstream pattern mining is a more specific task of CSP mining that has been lacking in research investment; nevertheless, it has promising applications in various fields. CCPC consists of two key steps: It initially builds the SPPC-tree and the C-List for each frequent 1-pattern and then determines all frequently closed clickstream 1-patterns; next, it constructs the C-List for each frequent k-pattern and mines the remaining frequently closed k-patterns. The proposed method is optimized by modifying the SPPC-tree structure and a new property is added into each node element in both the SPPC-tree and C-Lists to quickly prune nonclosed clickstream. Experimental results conducted on several datasets show that the proposed method is better than the previous techniques and improves the runtime and memory usage in most cases, especially when using low minimum support thresholds on the huge databases. © 2021 Taylor & Francis Group, LLC.
Název v anglickém jazyce
A novel approach for mining closed clickstream patterns
Popis výsledku anglicky
Closed sequential pattern (CSP) mining is an optimization technique in sequential pattern mining because they produce more compact representations. Additionally, the runtime and memory usage required for mining CSPs is much lower than the sequential pattern mining. This task has fascinated numerous researchers. In this study, we propose a novel approach for closed clickstream pattern mining using C-List (CCPC) data structure. Closed clickstream pattern mining is a more specific task of CSP mining that has been lacking in research investment; nevertheless, it has promising applications in various fields. CCPC consists of two key steps: It initially builds the SPPC-tree and the C-List for each frequent 1-pattern and then determines all frequently closed clickstream 1-patterns; next, it constructs the C-List for each frequent k-pattern and mines the remaining frequently closed k-patterns. The proposed method is optimized by modifying the SPPC-tree structure and a new property is added into each node element in both the SPPC-tree and C-Lists to quickly prune nonclosed clickstream. Experimental results conducted on several datasets show that the proposed method is better than the previous techniques and improves the runtime and memory usage in most cases, especially when using low minimum support thresholds on the huge databases. © 2021 Taylor & Francis Group, LLC.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Cybernetics and Systems
ISSN
0196-9722
e-ISSN
—
Svazek periodika
52
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
328-349
Kód UT WoS článku
000606927900001
EID výsledku v databázi Scopus
2-s2.0-85099369902