Sequential pattern mining using IDLists
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F20%3A63526960" target="_blank" >RIV/70883521:28140/20:63526960 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-63007-2_27" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-63007-2_27</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-63007-2_27" target="_blank" >10.1007/978-3-030-63007-2_27</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sequential pattern mining using IDLists
Popis výsledku v původním jazyce
Sequential pattern mining is a practical problem whose objective is to discover helpful informative patterns in a stored database such as market transaction databases. It covers many applications in different areas. Recently, a study that improved the runtime for mining patterns was proposed. It was called pseudo-IDLists and it helps prevent duplicate data from replicating during the mining process. However, the idea only works for the special type of sequential patterns, which are clickstream patterns. Direct applying the idea for sequential pattern mining is not feasible. Hence, we proposed adaptions and changes to the novel idea and proposed SUI (Sequential pattern mining Using IDList), a sequential pattern mining algorithm based on pseudo-IDLists. Via experiments on three test databases, we show that SUI is efficient and effective regarding runtime and memory consumption. © 2020, Springer Nature Switzerland AG.
Název v anglickém jazyce
Sequential pattern mining using IDLists
Popis výsledku anglicky
Sequential pattern mining is a practical problem whose objective is to discover helpful informative patterns in a stored database such as market transaction databases. It covers many applications in different areas. Recently, a study that improved the runtime for mining patterns was proposed. It was called pseudo-IDLists and it helps prevent duplicate data from replicating during the mining process. However, the idea only works for the special type of sequential patterns, which are clickstream patterns. Direct applying the idea for sequential pattern mining is not feasible. Hence, we proposed adaptions and changes to the novel idea and proposed SUI (Sequential pattern mining Using IDList), a sequential pattern mining algorithm based on pseudo-IDLists. Via experiments on three test databases, we show that SUI is efficient and effective regarding runtime and memory consumption. © 2020, Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-642-29352-8
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
13
Strana od-do
341-353
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
Heidelberg
Místo konání akce
Da Nang
Datum konání akce
30. 11. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—