Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

An approach for incremental mining of clickstream patterns as a service application

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63570701" target="_blank" >RIV/70883521:28140/23:63570701 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10185132" target="_blank" >https://ieeexplore.ieee.org/document/10185132</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TSC.2023.3294945" target="_blank" >10.1109/TSC.2023.3294945</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An approach for incremental mining of clickstream patterns as a service application

  • Popis výsledku v původním jazyce

    Sequential pattern mining in general and one particular form, clickstream pattern mining, are data mining topics that have recently attracted attention due to their potential applications of discovering useful patterns. However, in order to provide them as real-world service applications, one issue that needs to be addressed is that traditional algorithms often view databases as static, although in practice databases often grow over time and invalidate parts of the previous results after updates, forcing the algorithms to rerun from scratch on the updated databases to obtain updated frequent patterns. This can be inefficient as a service application due to the cost in terms of resources, and the returning of results to users can take longer when the databases get bigger. The response time can be shortened if the algorithms update the results based on incremental changes in databases. Thus, we propose PF-CUP (pre-frequent clickstream mining using pseudo-IDList), an approach towards incremental clickstream pattern mining as a service. The algorithm is based on the pre-large concept to maintain and update results and a data structure called a pre-frequent hash table to maintain the information about patterns. The experiments completed on different databases show that the proposed algorithm is efficient in incremental clickstream pattern mining. IEEE

  • Název v anglickém jazyce

    An approach for incremental mining of clickstream patterns as a service application

  • Popis výsledku anglicky

    Sequential pattern mining in general and one particular form, clickstream pattern mining, are data mining topics that have recently attracted attention due to their potential applications of discovering useful patterns. However, in order to provide them as real-world service applications, one issue that needs to be addressed is that traditional algorithms often view databases as static, although in practice databases often grow over time and invalidate parts of the previous results after updates, forcing the algorithms to rerun from scratch on the updated databases to obtain updated frequent patterns. This can be inefficient as a service application due to the cost in terms of resources, and the returning of results to users can take longer when the databases get bigger. The response time can be shortened if the algorithms update the results based on incremental changes in databases. Thus, we propose PF-CUP (pre-frequent clickstream mining using pseudo-IDList), an approach towards incremental clickstream pattern mining as a service. The algorithm is based on the pre-large concept to maintain and update results and a data structure called a pre-frequent hash table to maintain the information about patterns. The experiments completed on different databases show that the proposed algorithm is efficient in incremental clickstream pattern mining. IEEE

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Services Computing

  • ISSN

    1939-1374

  • e-ISSN

    1939-1374

  • Svazek periodika

    16

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    3892-3905

  • Kód UT WoS článku

    001142484600005

  • EID výsledku v databázi Scopus

    2-s2.0-85165246689