An efficient method for mining sequential patterns with indices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F22%3A63549719" target="_blank" >RIV/70883521:28140/22:63549719 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0950705121010832" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0950705121010832</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.knosys.2021.107946" target="_blank" >10.1016/j.knosys.2021.107946</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An efficient method for mining sequential patterns with indices
Popis výsledku v původním jazyce
In recent years, mining informative data and discovering hidden information have become increasingly in demand. One of the popular means to achieve this is sequential pattern mining, which is to find informative patterns stored in databases. Its applications cover different areas and many methods have been proposed. Recently, pseudo-IDLists were proposed to improve both runtime and memory usage in the mining process. However, the idea cannot be directly used for sequential pattern mining as it only works on clickstream patterns, a more distinct type of sequential pattern. We propose adaptations and changes to the original idea to introduce SUI (Sequential pattern mining Using Indices). Comparing SUI with two other state-of-the-art algorithms on six test databases, we show that SUI has effective and efficient performance and memory usage.
Název v anglickém jazyce
An efficient method for mining sequential patterns with indices
Popis výsledku anglicky
In recent years, mining informative data and discovering hidden information have become increasingly in demand. One of the popular means to achieve this is sequential pattern mining, which is to find informative patterns stored in databases. Its applications cover different areas and many methods have been proposed. Recently, pseudo-IDLists were proposed to improve both runtime and memory usage in the mining process. However, the idea cannot be directly used for sequential pattern mining as it only works on clickstream patterns, a more distinct type of sequential pattern. We propose adaptations and changes to the original idea to introduce SUI (Sequential pattern mining Using Indices). Comparing SUI with two other state-of-the-art algorithms on six test databases, we show that SUI has effective and efficient performance and memory usage.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Knowledge-Based Systems
ISSN
0950-7051
e-ISSN
1872-7409
Svazek periodika
239
Číslo periodika v rámci svazku
Neuveden
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
000788633300001
EID výsledku v databázi Scopus
2-s2.0-85122511875