Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Design of Adaptive Business Rules Model for High Frequency Data Processing

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F14%3APU112024" target="_blank" >RIV/00216305:26230/14:PU112024 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.fit.vutbr.cz/research/pubs/all.php?id=10669" target="_blank" >http://www.fit.vutbr.cz/research/pubs/all.php?id=10669</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Design of Adaptive Business Rules Model for High Frequency Data Processing

  • Popis výsledku v původním jazyce

    In this paper we would like to discuss high frequency data processing and the use of complex event platform in combination with business rules approach. For such a high volume of data, it is suitable to use complex event platform (CEP), because CEP allows for big data processing in real time. We would like to focus on improvement of decision making process under the condition of dynamical adaptation of the process on the fly. We will use pattern recognition for detecting and predicting the trends in data by mining this information from historical data. After the distinguishing patterns we will build the set of business rules according to which the process runs and we will control the process flow by defining the restrictions. We would like to use this model for building trading systems. Algorithmic trading applies complex event processing by calculating complex algorithms that indicate when to sell or buy based on real-time processing. Market data can be viewed as events. This data needs to be analyzed in real time in order to identify the trends in data and to react to these trends automatically. Traditional approach for detecting anomalies on stock market has been statistical analysis, but a CEP-based approach is able to react faster than the traditional approach.

  • Název v anglickém jazyce

    Design of Adaptive Business Rules Model for High Frequency Data Processing

  • Popis výsledku anglicky

    In this paper we would like to discuss high frequency data processing and the use of complex event platform in combination with business rules approach. For such a high volume of data, it is suitable to use complex event platform (CEP), because CEP allows for big data processing in real time. We would like to focus on improvement of decision making process under the condition of dynamical adaptation of the process on the fly. We will use pattern recognition for detecting and predicting the trends in data by mining this information from historical data. After the distinguishing patterns we will build the set of business rules according to which the process runs and we will control the process flow by defining the restrictions. We would like to use this model for building trading systems. Algorithmic trading applies complex event processing by calculating complex algorithms that indicate when to sell or buy based on real-time processing. Market data can be viewed as events. This data needs to be analyzed in real time in order to identify the trends in data and to react to these trends automatically. Traditional approach for detecting anomalies on stock market has been statistical analysis, but a CEP-based approach is able to react faster than the traditional approach.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    ISAT Monograph Series

  • ISBN

    978-83-7493-346-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    1-10

  • Název nakladatele

    Wroclaw University of Technology

  • Místo vydání

    Szklarska Poręba

  • Místo konání akce

    SZKLARSKA PORĘBA

  • Datum konání akce

    21. 7. 2014

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku