Fast Covariance Recovery in Incremental Nonlinear Least Square Solvers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F15%3APU116953" target="_blank" >RIV/00216305:26230/15:PU116953 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7139841" target="_blank" >http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7139841</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICRA.2015.7139841" target="_blank" >10.1109/ICRA.2015.7139841</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fast Covariance Recovery in Incremental Nonlinear Least Square Solvers
Popis výsledku v původním jazyce
Many estimation problems in robotics rely on efficiently solving nonlinear least squares (NLS). For example, it is well known that the simultaneous localisation and mapping (SLAM) problem can be formulated as a maximum likelihood estimation (MLE) and solved using NLS, yielding a mean state vector. However, for many applications recovering only the mean vector is not enough. Data association, active decisions, next best view, are only few of the applications that require fast state covariance recovery. The problem is not simple since, in general, the covariance is obtained by inverting the system matrix and the result is dense. The main contribution of this paper is a novel algorithm for fast incremental covariance update, complemented by a highly efficient implementation of the covariance recovery. This combination yields to two orders of magnitude reduction in computation time, compared to the other state of the art solutions. The proposed algorithm is applicable to any NLS solver implementation, and does not depend on incremental strategies described in our previous papers, which are not a subject of this paper.
Název v anglickém jazyce
Fast Covariance Recovery in Incremental Nonlinear Least Square Solvers
Popis výsledku anglicky
Many estimation problems in robotics rely on efficiently solving nonlinear least squares (NLS). For example, it is well known that the simultaneous localisation and mapping (SLAM) problem can be formulated as a maximum likelihood estimation (MLE) and solved using NLS, yielding a mean state vector. However, for many applications recovering only the mean vector is not enough. Data association, active decisions, next best view, are only few of the applications that require fast state covariance recovery. The problem is not simple since, in general, the covariance is obtained by inverting the system matrix and the result is dense. The main contribution of this paper is a novel algorithm for fast incremental covariance update, complemented by a highly efficient implementation of the covariance recovery. This combination yields to two orders of magnitude reduction in computation time, compared to the other state of the art solutions. The proposed algorithm is applicable to any NLS solver implementation, and does not depend on incremental strategies described in our previous papers, which are not a subject of this paper.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/7E13044" target="_blank" >7E13044: IMPART - Intelligent Management Platform for Advanced Real-Time media processes</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of IEEE International Conference on robotics and Automation
ISBN
978-1-4799-6922-7
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1-8
Název nakladatele
IEEE Computer Society
Místo vydání
Seattle
Místo konání akce
Seattle
Datum konání akce
26. 5. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000370974904084