SLAM++-A Highly Efficient and Temporally Scalable Incremental SLAM Framework
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F17%3APU121645" target="_blank" >RIV/00216305:26230/17:PU121645 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1177/0278364917691110" target="_blank" >https://doi.org/10.1177/0278364917691110</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1177/0278364917691110" target="_blank" >10.1177/0278364917691110</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SLAM++-A Highly Efficient and Temporally Scalable Incremental SLAM Framework
Popis výsledku v původním jazyce
The most common way to deal with the uncertainty present in noisy sensorial perception and action is to model the problem with a probabilistic framework. Maximum likelihood estimation (MLE) is a well-known estimation method used in many robotic and computer vision applications. Under Gaussian assumption, the MLE converts to a nonlinear least squares (NLS) problem. Efficient solutions to NLS exist and they are based on iteratively solving sparse linear systems until convergence. In general, the existing solutions provide only an estimation of the mean state vector, the resulting covariance being computationally too expensive to recover. Nevertheless, in many simultaneous localisation and mapping (SLAM) applications, knowing only the mean vector is not enough. Data association, obtaining reduced state representations, active decisions and next best view are only a few of the applications that require fast state covariance recovery. Furthermore, computer vision and robotic applications are in general performed online. In this case, the state is updated and recomputed every step and its size is continuously growing, therefore, the estimation process may become highly computationally demanding. This paper introduces a general framework for incremental MLE called SLAM++, which fully benefits from the incremental nature of the online applications, and provides efficient estimation of both the mean and the covariance of the estimate. Based on that, we propose a strategy for maintaining a sparse and scalable state representation for large scale mapping. SLAM++ differs from existing implementations by performing all the matrix operations by blocks. This led to extremely fast matrix manipulation and arithmetic operations used in NLS. Even though this paper tests SLAM++ efficiency on SLAM problems, its applicability remains general.
Název v anglickém jazyce
SLAM++-A Highly Efficient and Temporally Scalable Incremental SLAM Framework
Popis výsledku anglicky
The most common way to deal with the uncertainty present in noisy sensorial perception and action is to model the problem with a probabilistic framework. Maximum likelihood estimation (MLE) is a well-known estimation method used in many robotic and computer vision applications. Under Gaussian assumption, the MLE converts to a nonlinear least squares (NLS) problem. Efficient solutions to NLS exist and they are based on iteratively solving sparse linear systems until convergence. In general, the existing solutions provide only an estimation of the mean state vector, the resulting covariance being computationally too expensive to recover. Nevertheless, in many simultaneous localisation and mapping (SLAM) applications, knowing only the mean vector is not enough. Data association, obtaining reduced state representations, active decisions and next best view are only a few of the applications that require fast state covariance recovery. Furthermore, computer vision and robotic applications are in general performed online. In this case, the state is updated and recomputed every step and its size is continuously growing, therefore, the estimation process may become highly computationally demanding. This paper introduces a general framework for incremental MLE called SLAM++, which fully benefits from the incremental nature of the online applications, and provides efficient estimation of both the mean and the covariance of the estimate. Based on that, we propose a strategy for maintaining a sparse and scalable state representation for large scale mapping. SLAM++ differs from existing implementations by performing all the matrix operations by blocks. This led to extremely fast matrix manipulation and arithmetic operations used in NLS. Even though this paper tests SLAM++ efficiency on SLAM problems, its applicability remains general.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH
ISSN
0278-3649
e-ISSN
1741-3176
Svazek periodika
2017
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
21
Strana od-do
210-230
Kód UT WoS článku
000399558300006
EID výsledku v databázi Scopus
2-s2.0-85018786448