Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Large-scale Ultrasound Simulations Using the Hybrid OpenMP/MPI Decomposition

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F15%3APU116961" target="_blank" >RIV/00216305:26230/15:PU116961 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.easc2015.ed.ac.uk/proceedings" target="_blank" >http://www.easc2015.ed.ac.uk/proceedings</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Large-scale Ultrasound Simulations Using the Hybrid OpenMP/MPI Decomposition

  • Popis výsledku v původním jazyce

    The simulation of ultrasound wave propagation through biological tissue has a wide range of practical applications including planning therapeutic ultrasound treatments of various brain disorders such as brain tumours, essential tremor, and Parkinson's disease. The major challenge is to ensure the ultrasound focus is accurately placed at the desired target within the brain because the skull can significantly distort it. Performing accurate ultrasound simulations, however, requires the simulation code to be able to exploit several thousands of processor cores and work with datasets on the order of tens of TB.We have recently developed an efficient full-wave ultrasound model based on the pseudospectral method using pure-MPI with 1D slab domain decomposition that allows simulations to be performed  using up to 1024 compute cores. However, the slab decomposition limits the number of compute cores to be less or equal to the size of the longest dimension, which is usually below 1024. This paper presents an improved implementation that exploits 2D hybrid OpenMP/MPI decomposition. The 3D grid is first decomposed by MPI processes into slabs. The slabs are further partitioned into pencils assigned to threads on demand. This allows 8 to 16 times more compute cores to be employed compared to the pure-MPI code, while also reducing the amount of communication among processes due to the efficient use of shared memory within compute nodes. The hybrid code was tested on the Anselm Supercomputer (IT4Innovations, Czech Republic) with up to 2048 compute cores and the SuperMUC supercomputer (LRZ, Germany) with up to 8192 compute cores. The simulation domain sizes ranged from 256^3 to 1024^3 grid points. The experimental results show that the hybrid decomposition can significantly outperform the pure-MPI one for large simulation domains and high core counts, where the efficiency remains slightly below 50%. For a domain size of 1024^3, the hybrid code using 81

  • Název v anglickém jazyce

    Large-scale Ultrasound Simulations Using the Hybrid OpenMP/MPI Decomposition

  • Popis výsledku anglicky

    The simulation of ultrasound wave propagation through biological tissue has a wide range of practical applications including planning therapeutic ultrasound treatments of various brain disorders such as brain tumours, essential tremor, and Parkinson's disease. The major challenge is to ensure the ultrasound focus is accurately placed at the desired target within the brain because the skull can significantly distort it. Performing accurate ultrasound simulations, however, requires the simulation code to be able to exploit several thousands of processor cores and work with datasets on the order of tens of TB.We have recently developed an efficient full-wave ultrasound model based on the pseudospectral method using pure-MPI with 1D slab domain decomposition that allows simulations to be performed  using up to 1024 compute cores. However, the slab decomposition limits the number of compute cores to be less or equal to the size of the longest dimension, which is usually below 1024. This paper presents an improved implementation that exploits 2D hybrid OpenMP/MPI decomposition. The 3D grid is first decomposed by MPI processes into slabs. The slabs are further partitioned into pencils assigned to threads on demand. This allows 8 to 16 times more compute cores to be employed compared to the pure-MPI code, while also reducing the amount of communication among processes due to the efficient use of shared memory within compute nodes. The hybrid code was tested on the Anselm Supercomputer (IT4Innovations, Czech Republic) with up to 2048 compute cores and the SuperMUC supercomputer (LRZ, Germany) with up to 8192 compute cores. The simulation domain sizes ranged from 256^3 to 1024^3 grid points. The experimental results show that the hybrid decomposition can significantly outperform the pure-MPI one for large simulation domains and high core counts, where the efficiency remains slightly below 50%. For a domain size of 1024^3, the hybrid code using 81

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 3rd International Conference on Exascale Applications and Software

  • ISBN

    978-0-9926615-1-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    115-119

  • Název nakladatele

    Association for Computing Machinery

  • Místo vydání

    Edinburgh

  • Místo konání akce

    John McIntyre Centre, Pollock Halls, Edinburgh.

  • Datum konání akce

    21. 4. 2015

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku