Performance and Accuracy Analysis of Nonlinear k-Wave Simulations Using Local Domain Decomposition with an 8-GPU Server
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU130766" target="_blank" >RIV/00216305:26230/18:PU130766 - isvavai.cz</a>
Výsledek na webu
<a href="https://asa.scitation.org/doi/10.1121/2.0000883" target="_blank" >https://asa.scitation.org/doi/10.1121/2.0000883</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1121/2.0000883" target="_blank" >10.1121/2.0000883</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Performance and Accuracy Analysis of Nonlinear k-Wave Simulations Using Local Domain Decomposition with an 8-GPU Server
Popis výsledku v původním jazyce
Large-scale nonlinear ultrasound simulations using the open-source k-Wave toolbox are now routinely performed using the MPI version of k-Wave running on traditional CPU-based clusters. However, the allto-all communications required by the 3D fast Fourier transform (FFT) severely impact performance when scaling to large numbers of compute cores. This can be overcome by using a domain decomposition strategy based on a local Fourier basis. In this work, we analyse the performance and accuracy of using local domain decomposition for running a high-intensity focused ultrasound (HIFU) simulation in the kidney on a single server containing eight NVIDIA P40 graphical processing units (GPUs). Different decompositions and overlap sizes are investigated and compared to a global MPI simulation running on a CPU-based supercomputer using 1280 cores. For a grid size of 960 × 960 × 1280 grid points and an overlap size of 4 grid points, the error in the simulation using local domain decomposition is on the order of 0.1% compared to the global simulation, which is sufficient for most applications. The financial cost for running the simulation is also reduced by more than an order of magnitude.
Název v anglickém jazyce
Performance and Accuracy Analysis of Nonlinear k-Wave Simulations Using Local Domain Decomposition with an 8-GPU Server
Popis výsledku anglicky
Large-scale nonlinear ultrasound simulations using the open-source k-Wave toolbox are now routinely performed using the MPI version of k-Wave running on traditional CPU-based clusters. However, the allto-all communications required by the 3D fast Fourier transform (FFT) severely impact performance when scaling to large numbers of compute cores. This can be overcome by using a domain decomposition strategy based on a local Fourier basis. In this work, we analyse the performance and accuracy of using local domain decomposition for running a high-intensity focused ultrasound (HIFU) simulation in the kidney on a single server containing eight NVIDIA P40 graphical processing units (GPUs). Different decompositions and overlap sizes are investigated and compared to a global MPI simulation running on a CPU-based supercomputer using 1280 cores. For a grid size of 960 × 960 × 1280 grid points and an overlap size of 4 grid points, the error in the simulation using local domain decomposition is on the order of 0.1% compared to the global simulation, which is sufficient for most applications. The financial cost for running the simulation is also reduced by more than an order of magnitude.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Proceedings of Meetings on Acoustics
ISSN
1939-800X
e-ISSN
—
Svazek periodika
34
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
5
Strana od-do
1-5
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85064972728