Performance Evaluation of Pseudospectral Ultrasound Simulations on a Cluster of Xeon Phi Accelerators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F21%3APU138855" target="_blank" >RIV/00216305:26230/21:PU138855 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-67077-1_6" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-67077-1_6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-67077-1_6" target="_blank" >10.1007/978-3-030-67077-1_6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Performance Evaluation of Pseudospectral Ultrasound Simulations on a Cluster of Xeon Phi Accelerators
Popis výsledku v původním jazyce
The ability to perform large-scale ultrasound simulations has generated significant interest in medical ultrasonics, including for treatment planning in therapeutic ultrasound, and image reconstruction in photoacoustic tomography. However, routine execution of such simulations using traditional computational methods, e.g., finite difference time domain, is considered intractable due to the computational and memory requirements. The k-Wave toolbox alleviates these requirements by employing a k-space corrected pseudospectral method. This significantly reduces the spatial and temporal grid resolution, however, at the cost of introducing global all-to-all communication through the use of the fast Fourier transform. To improve data locality, reduce data movements and allow efficient use of accelerators, we recently implemented a domain decomposition technique based on local Fourier basis. Nowadays, the trend in parallel computing is towards the use of accelerated nodes where computationally intensive tasks are offloaded from processors to accelerators. In this paper, we investigate the performance aspects of the distributed k-Wave implementation running on the Salomon cluster equipped with 864 Intel Xeon Phi (Knight's Corner) accelerators. The paper shows that running large simulations across many accelerators is not a trivial task. The main obstacle is the instability of Intel MPI on Infiniband interconnection once the number of accelerators exceeds 32. Beyond this limit, the use of service 1Gbps interconnection is the only solution. The second problem is low performance of the fast Fourier transforms ranging from 1% to 50% of a single 12-core CPU. Finally, there is no support for fast LustreFS file system. Despite these factors, the observed strong and weak scaling is comparable with a cluster of CPU, but the absolute running time is between 4.3x and 1.8x longer in the worst and best case, respectively. However, the accounting policy for
Název v anglickém jazyce
Performance Evaluation of Pseudospectral Ultrasound Simulations on a Cluster of Xeon Phi Accelerators
Popis výsledku anglicky
The ability to perform large-scale ultrasound simulations has generated significant interest in medical ultrasonics, including for treatment planning in therapeutic ultrasound, and image reconstruction in photoacoustic tomography. However, routine execution of such simulations using traditional computational methods, e.g., finite difference time domain, is considered intractable due to the computational and memory requirements. The k-Wave toolbox alleviates these requirements by employing a k-space corrected pseudospectral method. This significantly reduces the spatial and temporal grid resolution, however, at the cost of introducing global all-to-all communication through the use of the fast Fourier transform. To improve data locality, reduce data movements and allow efficient use of accelerators, we recently implemented a domain decomposition technique based on local Fourier basis. Nowadays, the trend in parallel computing is towards the use of accelerated nodes where computationally intensive tasks are offloaded from processors to accelerators. In this paper, we investigate the performance aspects of the distributed k-Wave implementation running on the Salomon cluster equipped with 864 Intel Xeon Phi (Knight's Corner) accelerators. The paper shows that running large simulations across many accelerators is not a trivial task. The main obstacle is the instability of Intel MPI on Infiniband interconnection once the number of accelerators exceeds 32. Beyond this limit, the use of service 1Gbps interconnection is the only solution. The second problem is low performance of the fast Fourier transforms ranging from 1% to 50% of a single 12-core CPU. Finally, there is no support for fast LustreFS file system. Despite these factors, the observed strong and weak scaling is comparable with a cluster of CPU, but the absolute running time is between 4.3x and 1.8x longer in the worst and best case, respectively. However, the accounting policy for
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
High Performance Computing in Science and Engineering. HPCSE 2019
ISBN
978-3-030-67076-4
ISSN
—
e-ISSN
—
Počet stran výsledku
17
Strana od-do
99-115
Název nakladatele
Springer Nature Switzerland AG
Místo vydání
Cham
Místo konání akce
Hotel Soláň
Datum konání akce
20. 5. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—