Evolutionary Design of Complex Approximate Combinational Circuits
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F16%3APU121566" target="_blank" >RIV/00216305:26230/16:PU121566 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10710-015-9257-1" target="_blank" >http://dx.doi.org/10.1007/s10710-015-9257-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10710-015-9257-1" target="_blank" >10.1007/s10710-015-9257-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evolutionary Design of Complex Approximate Combinational Circuits
Popis výsledku v původním jazyce
Functional approximation is one of the methods allowing designers to approximate circuits at the level of logic behavior. By introducing a suitable functional approximation, power consumption, area or delay of a circuit can be reduced if some errors are acceptable in a particular application. As the error quantification is usually based on an arithmetic error metric in existing approximation methods, these methods are primarily suitable for the approximation of arithmetic and signal processing circuits. This paper deals with the approximation of general logic (such as pattern matching circuits and complex encoders) in which no additional information is usually available to establish a suitable error metric and hence the error of approximation is expressed in terms of Hamming distance between the output values produced by a candidate approximate circuit and the accurate circuit. We propose a circuit approximation method based on Cartesian genetic programming in which gate-level circuits are internally represented using directed acyclic graphs. In order to eliminate the well-known scalability problems of evolutionary circuit design, the error of approximation is determined by binary decision diagrams. The method is analyzed in terms of computational time and quality of approximation. It is able to deliver detailed Pareto fronts showing various compromises between the area, delay and error. Results are presented for 16 circuits (with 27-50 inputs) that are too complex to be approximated by means of existing evolutionary circuit design methods.
Název v anglickém jazyce
Evolutionary Design of Complex Approximate Combinational Circuits
Popis výsledku anglicky
Functional approximation is one of the methods allowing designers to approximate circuits at the level of logic behavior. By introducing a suitable functional approximation, power consumption, area or delay of a circuit can be reduced if some errors are acceptable in a particular application. As the error quantification is usually based on an arithmetic error metric in existing approximation methods, these methods are primarily suitable for the approximation of arithmetic and signal processing circuits. This paper deals with the approximation of general logic (such as pattern matching circuits and complex encoders) in which no additional information is usually available to establish a suitable error metric and hence the error of approximation is expressed in terms of Hamming distance between the output values produced by a candidate approximate circuit and the accurate circuit. We propose a circuit approximation method based on Cartesian genetic programming in which gate-level circuits are internally represented using directed acyclic graphs. In order to eliminate the well-known scalability problems of evolutionary circuit design, the error of approximation is determined by binary decision diagrams. The method is analyzed in terms of computational time and quality of approximation. It is able to deliver detailed Pareto fronts showing various compromises between the area, delay and error. Results are presented for 16 circuits (with 27-50 inputs) that are too complex to be approximated by means of existing evolutionary circuit design methods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20206 - Computer hardware and architecture
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-04197S" target="_blank" >GA14-04197S: Pokročilé metody evolučního návrhu složitých číslicových obvodů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Genetic Programming and Evolvable Machines
ISSN
1389-2576
e-ISSN
1573-7632
Svazek periodika
17
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
169-192
Kód UT WoS článku
000376876700004
EID výsledku v databázi Scopus
2-s2.0-84949685438