Collar Line Segments for Fast Odometry Estimation from Velodyne Point Clouds
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F16%3APU121570" target="_blank" >RIV/00216305:26230/16:PU121570 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/document/7487648/" target="_blank" >http://ieeexplore.ieee.org/document/7487648/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICRA.2016.7487648" target="_blank" >10.1109/ICRA.2016.7487648</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Collar Line Segments for Fast Odometry Estimation from Velodyne Point Clouds
Popis výsledku v původním jazyce
We present a novel way of odometry estimation from Velodyne LiDAR point cloud scans. The aim of our work is to overcome the most painful issues of Velodyne data - the sparsity and the quantity of data points - in an efficient way, enabling more precise registration. Alignment of the point clouds which yields the final odometry is based on random sampling of the clouds using Collar Line Segments. The closest line segment pairs are identified in two sets of line segments obtained from two consequent Velodyne scans. From each pair of correspondences, a transformation aligning the matched line segments into a 3D plane is estimated. By this, significant planes (ground, walls, ...) are preserved among aligned point clouds. Evaluation using the KITTI dataset shows that our method outperforms publicly available and commonly used state-of-the-art method GICP for point cloud registration in both accuracy and speed, especially in cases where the scene lacks significant landmarks or in typical urban elements. For such environments, the registration error of our method is reduced by 75% compared to the original GICP error.
Název v anglickém jazyce
Collar Line Segments for Fast Odometry Estimation from Velodyne Point Clouds
Popis výsledku anglicky
We present a novel way of odometry estimation from Velodyne LiDAR point cloud scans. The aim of our work is to overcome the most painful issues of Velodyne data - the sparsity and the quantity of data points - in an efficient way, enabling more precise registration. Alignment of the point clouds which yields the final odometry is based on random sampling of the clouds using Collar Line Segments. The closest line segment pairs are identified in two sets of line segments obtained from two consequent Velodyne scans. From each pair of correspondences, a transformation aligning the matched line segments into a 3D plane is estimated. By this, significant planes (ground, walls, ...) are preserved among aligned point clouds. Evaluation using the KITTI dataset shows that our method outperforms publicly available and commonly used state-of-the-art method GICP for point cloud registration in both accuracy and speed, especially in cases where the scene lacks significant landmarks or in typical urban elements. For such environments, the registration error of our method is reduced by 75% compared to the original GICP error.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of IEEE International Conference on Robotics and Automation
ISBN
978-1-4673-8025-6
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
4486-4491
Název nakladatele
IEEE Computer Society
Místo vydání
Stockholm
Místo konání akce
Stockholm
Datum konání akce
16. 5. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000389516203125