Exploiting Hidden-Layer Responses of Deep Neural Networks for Language Recognition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F16%3APU122427" target="_blank" >RIV/00216305:26230/16:PU122427 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.researchgate.net/publication/307889648_Exploiting_Hidden-Layer_Responses_of_Deep_Neural_Networks_for_Language_Recognition" target="_blank" >https://www.researchgate.net/publication/307889648_Exploiting_Hidden-Layer_Responses_of_Deep_Neural_Networks_for_Language_Recognition</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21437/Interspeech.2016-1584" target="_blank" >10.21437/Interspeech.2016-1584</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploiting Hidden-Layer Responses of Deep Neural Networks for Language Recognition
Popis výsledku v původním jazyce
The most popular way to apply Deep Neural Network (DNN) for Language IDentification (LID) involves the extraction of bottleneck features from a network that was trained on automatic speech recognition task. These features are modeled using a classical I-vector system. Recently, a more direct DNN approach was proposed, it consists of estimating the language posteriors directly from a stacked frames input. The final decision score is based on averaging the scores for all the frames for a given speech segment. In this paper, we extended the direct DNN approach by modeling all hidden-layer activations rather than just averaging the output scores. One super-vector per utterance is formed by concatenating all hidden-layer responses. The dimensionality of this vector is then reduced using a Principal Component Analysis (PCA). The obtained reduce vector summarizes the most discriminative features for language recognition based on the trained DNNs. We evaluated this approach in NIST 2015 language recognition evaluation. The performances achieved by the proposed approach are very competitive to the classical I-vector baseline.
Název v anglickém jazyce
Exploiting Hidden-Layer Responses of Deep Neural Networks for Language Recognition
Popis výsledku anglicky
The most popular way to apply Deep Neural Network (DNN) for Language IDentification (LID) involves the extraction of bottleneck features from a network that was trained on automatic speech recognition task. These features are modeled using a classical I-vector system. Recently, a more direct DNN approach was proposed, it consists of estimating the language posteriors directly from a stacked frames input. The final decision score is based on averaging the scores for all the frames for a given speech segment. In this paper, we extended the direct DNN approach by modeling all hidden-layer activations rather than just averaging the output scores. One super-vector per utterance is formed by concatenating all hidden-layer responses. The dimensionality of this vector is then reduced using a Principal Component Analysis (PCA). The obtained reduce vector summarizes the most discriminative features for language recognition based on the trained DNNs. We evaluated this approach in NIST 2015 language recognition evaluation. The performances achieved by the proposed approach are very competitive to the classical I-vector baseline.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of Interspeech 2016
ISBN
978-1-5108-3313-5
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
2365-2369
Název nakladatele
International Speech Communication Association
Místo vydání
San Francisco
Místo konání akce
San Francisco
Datum konání akce
8. 9. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000409394402034