Text-dependent speaker verification based on i-vectors, Neural Networks and Hidden Markov Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F17%3APU126451" target="_blank" >RIV/00216305:26230/17:PU126451 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0885230816303199" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0885230816303199</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.csl.2017.04.005" target="_blank" >10.1016/j.csl.2017.04.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Text-dependent speaker verification based on i-vectors, Neural Networks and Hidden Markov Models
Popis výsledku v původním jazyce
Inspired by the success of Deep Neural Networks (DNN) in text-independent speaker recognition, we have recently demonstrated that similar ideas can also be applied to the text-dependent speaker verification task. In this paper, we describe new advances with our state-of-the-art i-vector based approach to text-dependent speaker verification, which also makes use of different DNN techniques. In order to collect sufficient statistics for i-vector extraction, different frame alignment models are compared such as GMMs, phonemic HMMs or DNNs trained for senone classification. We also experiment with DNN based bottleneck features and their combinations with standard MFCC features. We experiment with few different DNN configurations and investigate the importance of training DNNs on 16 kHz speech. The results are reported on RSR2015 dataset, where training material is available for all possible enrollment and test phrases. Additionally, we report results also on more challenging RedDots dataset, where the system is built in truly phrase-independent way.
Název v anglickém jazyce
Text-dependent speaker verification based on i-vectors, Neural Networks and Hidden Markov Models
Popis výsledku anglicky
Inspired by the success of Deep Neural Networks (DNN) in text-independent speaker recognition, we have recently demonstrated that similar ideas can also be applied to the text-dependent speaker verification task. In this paper, we describe new advances with our state-of-the-art i-vector based approach to text-dependent speaker verification, which also makes use of different DNN techniques. In order to collect sufficient statistics for i-vector extraction, different frame alignment models are compared such as GMMs, phonemic HMMs or DNNs trained for senone classification. We also experiment with DNN based bottleneck features and their combinations with standard MFCC features. We experiment with few different DNN configurations and investigate the importance of training DNNs on 16 kHz speech. The results are reported on RSR2015 dataset, where training material is available for all possible enrollment and test phrases. Additionally, we report results also on more challenging RedDots dataset, where the system is built in truly phrase-independent way.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTER SPEECH AND LANGUAGE
ISSN
0885-2308
e-ISSN
1095-8363
Svazek periodika
2017
Číslo periodika v rámci svazku
46
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
53-71
Kód UT WoS článku
000407609600003
EID výsledku v databázi Scopus
2-s2.0-85019904410