Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Text-dependent speaker verification based on i-vectors, Neural Networks and Hidden Markov Models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F17%3APU126451" target="_blank" >RIV/00216305:26230/17:PU126451 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.sciencedirect.com/science/article/pii/S0885230816303199" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0885230816303199</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.csl.2017.04.005" target="_blank" >10.1016/j.csl.2017.04.005</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Text-dependent speaker verification based on i-vectors, Neural Networks and Hidden Markov Models

  • Popis výsledku v původním jazyce

    Inspired by the success of Deep Neural Networks (DNN) in text-independent speaker recognition, we have recently demonstrated that similar ideas can also be applied to the text-dependent speaker verification task. In this paper, we describe new advances with our state-of-the-art i-vector based approach to text-dependent speaker verification, which also makes use of different DNN techniques. In order to collect sufficient statistics for i-vector extraction, different frame alignment models are compared such as GMMs, phonemic HMMs or DNNs trained for senone classification. We also experiment with DNN based bottleneck features and their combinations with standard MFCC features. We experiment with few different DNN configurations and investigate the importance of training DNNs on 16 kHz speech. The results are reported on RSR2015 dataset, where training material is available for all possible enrollment and test phrases. Additionally, we report results also on more challenging RedDots dataset, where the system is built in truly phrase-independent way.

  • Název v anglickém jazyce

    Text-dependent speaker verification based on i-vectors, Neural Networks and Hidden Markov Models

  • Popis výsledku anglicky

    Inspired by the success of Deep Neural Networks (DNN) in text-independent speaker recognition, we have recently demonstrated that similar ideas can also be applied to the text-dependent speaker verification task. In this paper, we describe new advances with our state-of-the-art i-vector based approach to text-dependent speaker verification, which also makes use of different DNN techniques. In order to collect sufficient statistics for i-vector extraction, different frame alignment models are compared such as GMMs, phonemic HMMs or DNNs trained for senone classification. We also experiment with DNN based bottleneck features and their combinations with standard MFCC features. We experiment with few different DNN configurations and investigate the importance of training DNNs on 16 kHz speech. The results are reported on RSR2015 dataset, where training material is available for all possible enrollment and test phrases. Additionally, we report results also on more challenging RedDots dataset, where the system is built in truly phrase-independent way.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    COMPUTER SPEECH AND LANGUAGE

  • ISSN

    0885-2308

  • e-ISSN

    1095-8363

  • Svazek periodika

    2017

  • Číslo periodika v rámci svazku

    46

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    19

  • Strana od-do

    53-71

  • Kód UT WoS článku

    000407609600003

  • EID výsledku v databázi Scopus

    2-s2.0-85019904410