Spoken Pass-Phrase Verification in the i-vector Space
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU130771" target="_blank" >RIV/00216305:26230/18:PU130771 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.fit.vut.cz/research/publication/11791/" target="_blank" >https://www.fit.vut.cz/research/publication/11791/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21437/Odyssey.2018-52" target="_blank" >10.21437/Odyssey.2018-52</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spoken Pass-Phrase Verification in the i-vector Space
Popis výsledku v původním jazyce
The task of spoken pass-phrase verification is to decide whether a test utterance contains the same phrase as given enrollment utterances. Beside other applications, pass-phrase verification can complement an independent speaker verification subsystem in text-dependent speaker verification. It can also be used for liveness detection by verifying that the user is able to correctly respond to a randomly prompted phrase. In this paper, we build on our previous work on i-vector based text-dependent speaker verification, where we have shown that i-vectors extracted using phrase specific Hidden Markov Models (HMMs) or using Deep Neural Network (DNN) based bottle-neck (BN) features help to reject utterances with wrong pass-phrases. We apply the same i-vector extraction techniques to the stand-alone task of speakerindependent spoken pass-phrase classification and verification. The experiments on RSR2015 and RedDots databases show that very simple scoring techniques (e.g. cosine distance scoring) applied to such i-vectors can provide results superior to those previously published on the same data.
Název v anglickém jazyce
Spoken Pass-Phrase Verification in the i-vector Space
Popis výsledku anglicky
The task of spoken pass-phrase verification is to decide whether a test utterance contains the same phrase as given enrollment utterances. Beside other applications, pass-phrase verification can complement an independent speaker verification subsystem in text-dependent speaker verification. It can also be used for liveness detection by verifying that the user is able to correctly respond to a randomly prompted phrase. In this paper, we build on our previous work on i-vector based text-dependent speaker verification, where we have shown that i-vectors extracted using phrase specific Hidden Markov Models (HMMs) or using Deep Neural Network (DNN) based bottle-neck (BN) features help to reject utterances with wrong pass-phrases. We apply the same i-vector extraction techniques to the stand-alone task of speakerindependent spoken pass-phrase classification and verification. The experiments on RSR2015 and RedDots databases show that very simple scoring techniques (e.g. cosine distance scoring) applied to such i-vectors can provide results superior to those previously published on the same data.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of Odyssey 2018
ISBN
—
ISSN
2312-2846
e-ISSN
—
Počet stran výsledku
6
Strana od-do
372-377
Název nakladatele
International Speech Communication Association
Místo vydání
Les Sables d´Olonne
Místo konání akce
Les Sables d'Olonne, France
Datum konání akce
26. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—