Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automatic Design of Arbitrary-Size Approximate Sorting Networks with Error Guarantee

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F16%3APU122829" target="_blank" >RIV/00216305:26230/16:PU122829 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.fit.vutbr.cz/research/pubs/all.php?id=11175" target="_blank" >http://www.fit.vutbr.cz/research/pubs/all.php?id=11175</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/PATMOS.2016.7833691" target="_blank" >10.1109/PATMOS.2016.7833691</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automatic Design of Arbitrary-Size Approximate Sorting Networks with Error Guarantee

  • Popis výsledku v původním jazyce

    Despite the fact that hardware sorters offer great performance, they become expensive as the number of inputs increases. In order to address the problem of high-performance and power-efficient computing, we propose a scalable method for construction of power-efficient sorting networks suitable for hardware implementation. The proposed approach exploits the error resilience which is present in many real-world applications such as digital signal processing, biological computing and large-scale scientific computing. The method is based on recursive construction of large sorting networks using smaller instances of approximate sorting networks. The design process is tunable and enables to achieve desired tradeoffs between the accuracy and power consumption or implementation cost. A search-based design method is used to obtain approximate sorting networks. To measure and analyze the accuracy of approximate networks, three data-independent quality metrics are proposed. Namely, guarantee of error probability, worst-case error and error distribution are discussed. A significant improvement in the implementation cost and power consumption was obtained. For example, 20% reduction in power consumption was achieved by introducing a small error in 256-input sorter. The difference in rank is proved to be not worse than 2 with probability at least 99%. In addition to that, it is guaranteed that the worst-case difference is equal to 6.

  • Název v anglickém jazyce

    Automatic Design of Arbitrary-Size Approximate Sorting Networks with Error Guarantee

  • Popis výsledku anglicky

    Despite the fact that hardware sorters offer great performance, they become expensive as the number of inputs increases. In order to address the problem of high-performance and power-efficient computing, we propose a scalable method for construction of power-efficient sorting networks suitable for hardware implementation. The proposed approach exploits the error resilience which is present in many real-world applications such as digital signal processing, biological computing and large-scale scientific computing. The method is based on recursive construction of large sorting networks using smaller instances of approximate sorting networks. The design process is tunable and enables to achieve desired tradeoffs between the accuracy and power consumption or implementation cost. A search-based design method is used to obtain approximate sorting networks. To measure and analyze the accuracy of approximate networks, three data-independent quality metrics are proposed. Namely, guarantee of error probability, worst-case error and error distribution are discussed. A significant improvement in the implementation cost and power consumption was obtained. For example, 20% reduction in power consumption was achieved by introducing a small error in 256-input sorter. The difference in rank is proved to be not worse than 2 with probability at least 99%. In addition to that, it is guaranteed that the worst-case difference is equal to 6.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA16-17538S" target="_blank" >GA16-17538S: Přibližná ekvivalence pro aproximativní počítání</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Power and Timing Modeling, Optimization and Simulation (PATMOS), 2016 26rd International Workshop on

  • ISBN

    978-1-5090-0733-2

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    221-228

  • Název nakladatele

    Institute of Electrical and Electronics Engineers

  • Místo vydání

    Bremen

  • Místo konání akce

    Bremen

  • Datum konání akce

    20. 9. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000401809900038