Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Design of Power-Efficient Approximate Multipliers for Approximate Artificial Neural Networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F16%3APU122828" target="_blank" >RIV/00216305:26230/16:PU122828 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.fit.vutbr.cz/research/pubs/all.php?id=11142" target="_blank" >http://www.fit.vutbr.cz/research/pubs/all.php?id=11142</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/2966986.2967021" target="_blank" >10.1145/2966986.2967021</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Design of Power-Efficient Approximate Multipliers for Approximate Artificial Neural Networks

  • Popis výsledku v původním jazyce

    Artificial neural networks (NN) have shown a significant promise in difficult tasks like image classification or speech recognition. Even well-optimized hardware implementations of digital NNs show significant power consumption. It is mainly due to non-uniform pipeline structures and inherent redundancy of numerous arithmetic operations that have to be performed to produce each single output vector.  This paper provides a methodology for the design of well-optimized power-efficient NNs with a uniform structure suitable for hardware implementation. An error resilience analysis was performed in order to determine key constraints for the design of approximate multipliers that are employed in the resulting structure of NN. By means of a search based approximation method, approximate multipliers showing desired tradeoffs between the accuracy and implementation cost were created. Resulting approximate NNs, containing the approximate multipliers, were evaluated using standard benchmarks (MNIST dataset) and a real-world classification problem of Street-View House Numbers. Significant improvement in power efficiency was obtained in both cases with respect to regular NNs. In some cases, 91% power reduction of multiplication led to classification accuracy degradation of less than 2.80%. Moreover, the paper showed the capability of the back propagation learning algorithm to adapt with NNs containing the approximate multipliers. 

  • Název v anglickém jazyce

    Design of Power-Efficient Approximate Multipliers for Approximate Artificial Neural Networks

  • Popis výsledku anglicky

    Artificial neural networks (NN) have shown a significant promise in difficult tasks like image classification or speech recognition. Even well-optimized hardware implementations of digital NNs show significant power consumption. It is mainly due to non-uniform pipeline structures and inherent redundancy of numerous arithmetic operations that have to be performed to produce each single output vector.  This paper provides a methodology for the design of well-optimized power-efficient NNs with a uniform structure suitable for hardware implementation. An error resilience analysis was performed in order to determine key constraints for the design of approximate multipliers that are employed in the resulting structure of NN. By means of a search based approximation method, approximate multipliers showing desired tradeoffs between the accuracy and implementation cost were created. Resulting approximate NNs, containing the approximate multipliers, were evaluated using standard benchmarks (MNIST dataset) and a real-world classification problem of Street-View House Numbers. Significant improvement in power efficiency was obtained in both cases with respect to regular NNs. In some cases, 91% power reduction of multiplication led to classification accuracy degradation of less than 2.80%. Moreover, the paper showed the capability of the back propagation learning algorithm to adapt with NNs containing the approximate multipliers. 

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the IEEE/ACM International Conference on Computer-Aided Design

  • ISBN

    978-1-4503-4466-1

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

    811-817

  • Název nakladatele

    Association for Computing Machinery

  • Místo vydání

    Austin, TX

  • Místo konání akce

    Austin, TX

  • Datum konání akce

    7. 11. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000390297800081