Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

ALWANN: Automatic Layer-Wise Approximation of Deep Neural Network Accelerators without Retraining

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU134945" target="_blank" >RIV/00216305:26230/19:PU134945 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://arxiv.org/abs/1907.07229" target="_blank" >https://arxiv.org/abs/1907.07229</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICCAD45719.2019.8942068" target="_blank" >10.1109/ICCAD45719.2019.8942068</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    ALWANN: Automatic Layer-Wise Approximation of Deep Neural Network Accelerators without Retraining

  • Popis výsledku v původním jazyce

    The state-of-the-art approaches employ approximate computing to reduce the energy consumption of DNN hardware. Approximate DNNs then require extensive retraining afterwards to recover from the accuracy loss caused by the use of approximate operations. However, retraining of complex DNNs does not scale well. In this paper, we demonstrate that efficient approximations can be introduced into the computational path of DNN accelerators while retraining can completely be avoided. ALWANN provides highly optimized implementations of DNNs for custom low-power accelerators in which the number of computing units is lower than the number of DNN layers. First, a fully trained DNN is converted to operate with 8-bit weights and 8-bit multipliers in convolutional layers. A suitable approximate multiplier is then selected for each computing element from a library of approximate multipliers in such a way that (i) one approximate multiplier serves several layers, and (ii) the overall classification error and energy consumption are minimized. The optimizations including the multiplier selection problem are solved by means of a multiobjective optimization NSGA-II algorithm. In order to completely avoid the computationally expensive retraining of DNN, which is usually employed to improve the classification accuracy, we propose a simple weight updating scheme that compensates the inaccuracy introduced by employing approximate multipliers. The proposed approach is evaluated for two architectures of DNN accelerators with approximate multipliers from the open-source "EvoApprox" library. We report that the proposed approach saves 30% of energy needed for multiplication in convolutional layers of ResNet-50 while the accuracy is degraded by only 0.6%. The proposed technique and approximate layers are available as an open-source extension of TensorFlow at https://github.com/ehw-fit/tf-approximate.

  • Název v anglickém jazyce

    ALWANN: Automatic Layer-Wise Approximation of Deep Neural Network Accelerators without Retraining

  • Popis výsledku anglicky

    The state-of-the-art approaches employ approximate computing to reduce the energy consumption of DNN hardware. Approximate DNNs then require extensive retraining afterwards to recover from the accuracy loss caused by the use of approximate operations. However, retraining of complex DNNs does not scale well. In this paper, we demonstrate that efficient approximations can be introduced into the computational path of DNN accelerators while retraining can completely be avoided. ALWANN provides highly optimized implementations of DNNs for custom low-power accelerators in which the number of computing units is lower than the number of DNN layers. First, a fully trained DNN is converted to operate with 8-bit weights and 8-bit multipliers in convolutional layers. A suitable approximate multiplier is then selected for each computing element from a library of approximate multipliers in such a way that (i) one approximate multiplier serves several layers, and (ii) the overall classification error and energy consumption are minimized. The optimizations including the multiplier selection problem are solved by means of a multiobjective optimization NSGA-II algorithm. In order to completely avoid the computationally expensive retraining of DNN, which is usually employed to improve the classification accuracy, we propose a simple weight updating scheme that compensates the inaccuracy introduced by employing approximate multipliers. The proposed approach is evaluated for two architectures of DNN accelerators with approximate multipliers from the open-source "EvoApprox" library. We report that the proposed approach saves 30% of energy needed for multiplication in convolutional layers of ResNet-50 while the accuracy is degraded by only 0.6%. The proposed technique and approximate layers are available as an open-source extension of TensorFlow at https://github.com/ehw-fit/tf-approximate.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-10137S" target="_blank" >GA19-10137S: Navrhování a využívání knihoven aproximativních obvodů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the IEEE/ACM International Conference on Computer-Aided Design

  • ISBN

    978-1-7281-2350-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    1-8

  • Název nakladatele

    Institute of Electrical and Electronics Engineers

  • Místo vydání

    Denver

  • Místo konání akce

    Denver, CO

  • Datum konání akce

    4. 11. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000524676400028