Libraries of Approximate Circuits: Automated Design and Application in CNN Accelerators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F20%3APU138669" target="_blank" >RIV/00216305:26230/20:PU138669 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.fit.vut.cz/research/publication/12372/" target="_blank" >https://www.fit.vut.cz/research/publication/12372/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/JETCAS.2020.3032495" target="_blank" >10.1109/JETCAS.2020.3032495</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Libraries of Approximate Circuits: Automated Design and Application in CNN Accelerators
Popis výsledku v původním jazyce
Libraries of approximate circuits are composed of fully characterized digital circuits that can be used as building blocks of energy-efficient implementations of hardware accelerators. They can be employed not only to speed up the accelerator development but also to analyze how an accelerator responds to introducing various approximate operations. In this paper, we present a methodology that automatically builds comprehensive libraries of approximate circuits with desired properties. Target approximate circuits are generated using Cartesian genetic programming. In addition to extending the EvoApprox8b library that contains common approximate arithmetic circuits, we show how to generate more specific approximate circuits; in particular, MxN-bit approximate multipliers that exhibit promising results when deployed in convolutional neural networks. By means of the evolved approximate multipliers, we perform a detailed error resilience analysis of five different ResNet networks. We identify the convolutional layers that are good candidates for adopting the approximate multipliers and suggest particular approximate multipliers whose application can lead to the best trade-offs between the classification accuracy and energy requirements. Experiments are reported for CIFAR-10 and CIFAR-100 data sets.
Název v anglickém jazyce
Libraries of Approximate Circuits: Automated Design and Application in CNN Accelerators
Popis výsledku anglicky
Libraries of approximate circuits are composed of fully characterized digital circuits that can be used as building blocks of energy-efficient implementations of hardware accelerators. They can be employed not only to speed up the accelerator development but also to analyze how an accelerator responds to introducing various approximate operations. In this paper, we present a methodology that automatically builds comprehensive libraries of approximate circuits with desired properties. Target approximate circuits are generated using Cartesian genetic programming. In addition to extending the EvoApprox8b library that contains common approximate arithmetic circuits, we show how to generate more specific approximate circuits; in particular, MxN-bit approximate multipliers that exhibit promising results when deployed in convolutional neural networks. By means of the evolved approximate multipliers, we perform a detailed error resilience analysis of five different ResNet networks. We identify the convolutional layers that are good candidates for adopting the approximate multipliers and suggest particular approximate multipliers whose application can lead to the best trade-offs between the classification accuracy and energy requirements. Experiments are reported for CIFAR-10 and CIFAR-100 data sets.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20206 - Computer hardware and architecture
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-10137S" target="_blank" >GA19-10137S: Navrhování a využívání knihoven aproximativních obvodů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Journal on Emerging and Selected Topics in Circuits and Systems
ISSN
2156-3357
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
406-418
Kód UT WoS článku
000598110700002
EID výsledku v databázi Scopus
2-s2.0-85093670630